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Bayes vs. Resampling: A Rematch

Abstract

We replay an investment game that compares the performance of a player using

Bayesian methods for determining portfolio weights with a player that uses the Monte

Carlo based resampling approach advocated in Michaud (1998). Markowitz and Us-

men (2003) showed that the Michaud player always won. However, in the original

experiment, the Bayes player was handicapped because the algorithm that was used to

evaluate the predictive distribution of the portfolio provided only a rough approxima-

tion. We level the playing field by allowing the Bayes player to use a more standard

algorithm. Our results sharply contrast with those of the original game. The final

part of our paper proposes a new investment game that is much more relevant for the

average investor - a one-period ahead asset allocation. For this game, the Bayes player

always wins.



Introduction

In the classic mean-variance portfolio selection problem, the investor is presumed to have

complete knowledge of the inputs, i.e. exact knowledge of expected returns, variances,

and covariances. Most often this assumption is considered innocuous, ignored, or perhaps

not fully understood by asset managers. There have been many advances in dealing with

parameter uncertainty.1 In an important recent article, Markowitz and Usmen (2003) report

the results of an experiment which compares the performance of two competing methods

for determining optimal portfolio weights, where each method explicitly accommodates the

uncertainty in the parameter estimates. We revisit this comparison.

In the first approach, portfolio weights are found by integrating out these uncertainties

using Bayesian methods. In the second approach, a competing set of weights are obtained

using the Resampled Efficient FrontiersTM method found in Michaud (1998)2. Markowitz

and Usmen (2003) conduct an experiment using synthetic data and find that the resampled

weights perform better than the weights implied by a Bayesian method.

We replay the same investment simulation game, with two main differences from the way

the game was played by Markowitz and Usmen (2003). First, while they use uniform prior

distributions for the mean and covariance, we use a hierarchical Bayesian model with diffuse,

conjugate prior distributions that mimic uniform prior distributions. This facilitates the

second and more important difference, i.e., the use of a Markov Chain Monte Carlo (MCMC)

algorithm, as opposed to an Importance Sampling algorithm. While both approaches are

used in the literature, the MCMC algorithm is almost always preferred in part because
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of well documented problems that can arise with regards to the variance of Importance

Sampling approximations, see Robert and Casella (1998) and Bernardo and Smith (1994).

In addition, Markowitz and Usmen (2003) probably used too few samples to approximate

these high dimensional integrals.

Under the MCMC inference method, we find that the results from the investment game

sharply differ from the original experiment. In our rematch, there are many cases where

weights from the Bayesian method perform better than weights from the resampling method,

using the same performance criteria as the initial experiment. In this rematch, we found that

the Bayesian method does better at low levels of risk aversion and the resampling method

does better at high levels of risk aversion. We provide the economic intuition for the role of

risk aversion.

We also consider a second competition, a one-step ahead version of the investment prob-

lem, which is more relevant from the investor’s perspective. In this competition, additional

returns are generated and one-step ahead portfolio returns are calculated for all of the differ-

ent historical data sets. We find that the Bayes approach dominates the resampled efficient

frontier approach when the data are drawn from a distribution that is consistent with the

data in each history, i.e. drawn from the predictive distribution conditional on each history.

Our results lead us to conjecture that the resampled frontier approach has practical merit

when the future returns are not consistent with the historical returns (e.g., when the under-

lying statistical model has been misspecified or the data is drawn from a distribution other

than the predictive distribution) or when the investor has a very long investment horizon,

as implied by the criteria used in the initial competition, and is not very risk averse. Later
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we explore why risk aversion impacts the success of these approaches for both competitions.

The remainder of the paper is organized as follows. In Section I, we review the simulation

competition and the set of utility functions that are considered. We briefly review the

equivalent Resampled Efficient FrontierTM approach that we use in Section II, and we discuss

our modification of the specification of the Bayesian investor in Section III. In Section IV ,

we explore the one-step ahead investment problem and conclude with a discussion of the

results and potential reasons for the differences between the original experiment and the

new experiment. We also discuss settings where the resampled frontier approach may offer

a more robust solution to the portfolio allocation problem. Some concluding remarks are

offered in Section V .

I The Investment Game

Following Markowitz and Usmen (2003), we conduct a simulated investment ‘game’ with

two players and a referee. The referee generates 10 ‘true’ parameter sets for a multivariate

normal density. Each ‘true’ parameter set summarizes the behavior for a group of eight

asset returns in the sense that for each ‘truth’ the monthly percent returns for these eight

assets are assumed to be i.i.d. normal with means, variances and covariance given by the

corresponding ‘true’ set of parameters. As in the original experiment, we mimic the asset

allocation task discussed in Michaud (1998), where the assets that are being considered are

a collection of six equity indices (Canada, France, Germany, Japan, United Kingdom and

United States) and two bond indices (United States Treasury bond and a Eurodollar bond).
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The referee starts with an original set of parameters, which are the Maximum Likelihood

Estimates (MLE) of the mean and covariance for these eight assets based on their monthly

percent returns over the 216 months from January 1978 to December 1995; see Chapter 2

of Michaud (1998) for the exact values. The referee then generates 10 sets of perturbed

parameters, or “truths,” by generating 216 draws from a multivariate normal density using

the original parameters and a new random seed; the perturbed or ‘true’ parameters are the

MLE estimates from each corresponding sets of draws. Using each of the 10 truths, the

referee then generates 100 histories (each with 216 simulated observations), which form the

basis of the games, see Figure 1 for a summary. To be more explicit, let μOP and ΣOP be the

mean and covariance matrix representing the original parameters. The referee creates the

ith set of ‘true’ parameters (μT i, ΣT i), by generating rin ∼ N (μOP , ΣOP ) , for n = 1, .., 216

and letting

μT i =
1

216

216∑
n=1

rin and ΣT i =
1

216

216∑
n=1

(rin − μT i) (rin − μT i)
′ . (1)

For each (μT i, ΣT i), the referee generates 100 histories, where the kth history for the ith set

of ‘true’ parameters is as follows:

Hik = {rikn : rikn ∼ N (μT i, ΣT i) , n = 1, .., 216} . (2)

[Insert Figure 1 About Here]
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The investment game is played as follows. The referee gives each player a simulated

history and the players tell the referee the portfolio weights that they believe will maximize

the expected utility under three different utility functions; the utility functions are given by:

uλ (ω, rn+1) = ω′rn+1 − λ (ω′ (rn+1 − E [rn+1|H ]))
2
, λ = {0.5, 1.0, 2.0}, (3)

where E [rn+1|H ] is the predictive mean given history H , ω are the portfolio weights, rn+1

are the predictive returns (e.g. the distribution of returns for the next month, month 217,

conditional on the observed returns, months 1 to 216) and λ reflects risk aversion and takes

three different values. In addition to returning the optimal portfolio weights, the players

also tell the referee their own estimate of the expected utility using their optimal weights.

The referee compares each players’ weights by calculating the players’ expected utility using

the true parameter values in place of the predictive mean and covariance. For each of the

100 histories, the player with the weights that result in a higher expected utility, using the

true parameter values, is determined to have won.

As shown in Markowitz and Usmen (2003) and Harvey et al. (2006), the expected utility

of (3), given a specific history H is a function of predictive moments (mean and covariance).

The predictive mean is equal to the posterior mean, which will be very close to the MLE

estimate of μ (the historical average returns). The predictive covariance matrix, however, is

composed of two different summaries of uncertainty: (1) the posterior mean of Σ, which will

be very close to the MLE estimate of Σ (the historical covariance matrix of the returns) and

(2) the posterior mean of the covariance of μ, which reflects our uncertainty with respect
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to the mean returns μ given the data that has been observed. So Σ captures both the

covariance of the return as well as summarizing the inherent uncertainty in estimating the

average return or the uncertainty with respect to μ. (See Appendix A.1 for more details).

The Bayes player finds the weights, ωB, which maximize the expected utility with respect

to the predictive moments for each history, while the Michaud player finds the weights, ωM ,

using the resampling scheme. The referee compares both sets of weights assuming the true

parameters used to generate the history, μT , ΣT , are the predictive mean and covariance, or

Eu1λ (ω|H) = ω′μT − λω′ΣT ω. (4)

Before describing the details of how the Michaud and Bayes player obtain their portfolio

weights, it is worth observing that the referee and two players are not using consistent

frameworks. The Bayes player uses a utility function based on predictive returns and the

Michaud player uses a utility function based on parameter estimates. The referee evaluates

performance based on the ‘true’ parameters, which ignores the contribution to Σ that comes

from the inherent uncertainty regarding the ‘true’ average return. If this extra variance is

missing, the estimate for the portfolio variance will be lower than they should be, which will

lead to suboptimal portfolio allocation.

II The Resampling Player

As in the original experiment, we consider the basic version of the resampled frontier ap-

proach. Markowitz and Usmen (2003) form the resampled frontier by calculating the re-
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sampled weights for an appropriate grid of portfolio standard deviations. In our experiment,

we implement the alternative, but equivalent approach, of constructing a resampled frontier

by calculating portfolio weights for a range of linear utility functions, see Michaud (1998,

p. 66) for a discussion. The advantage of using this version of the resampling approach is

that the resampled frontier only needs to be calculated for values of λ that are of interest

to the referee and there is no need to calculate the frontier for a grid of portfolio standard

deviations.

For each history Hik, the Michaud player uses the corresponding standard parameter esti-

mates μik and Σik and generates 500 additional histories, which we will denote as resampled

histories HR
ikm, by drawing 216 i.i.d. normal draws using μik and Σik. For each resampled

history, a discrete approximation of the efficient frontier is calculated, or a set of 101 weights

describing the efficient frontier based on the standard estimates from each resampled history

are calculated. Next, the set of weights which gives the highest utility value is selected for

each resampled history.

The Michaud weights are equal to the average of the best weights for each resampled

history3. Stated more explicitly, in the original experiment, the Michaud player calculates

an efficient frontier for each resampled history4, HR
ikm, and for a discrete grid of 101 equally

spaced portfolio standard deviations (σikm,min, σikm,1, ..., σikm,99, σikm,max), they calculate a set

of weights Wikm = (ωikm,min, ωikm,1, ..., ωikm,99, ωikm,max) that maximize the portfolio expected

return for the corresponding standard deviation; these weights form a discrete estimate of

the efficient frontier for the corresponding resampled history, HR
ikm, - one draw from the

resampled frontier. In the original experiment, for each value of λ, the Michaud player
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selects the weights as follows,

ωλikm = arg max
{
ω′μR

ikm − λω′ΣR
ikmω : ω ∈ Wikm

}
. (5)

Then the ‘resampled’ weights, ωλik, reported by the Michaud player for the kth history asso-

ciated with the ith ‘truth’, are the average optimal weights over the corresponding resampled

histories, or

ωλik =
1

500

∑
m

ωλikm. (6)

Alternatively, the maximized weights for each μR
ikm and ΣR

ik and for each λ can be obtained

directly by solving the standard quadratic programming problem of

ωλikm = arg max

{
ω′μR

ik − λω′ΣR
ikω : 0 ≤ ω,

∑
p

ωp = 1

}
. (7)

Finding the optimal weights for each λ in this fashion has two advantages, first it requires

fewer optimizations (3 compared to 101) and it obtains a set of weights for each resampled

history which is at least as good as the weights using the original experiment.

III The Bayes Player

In our rematch, the Bayes player will use a different approach for calculating the expected

utility. In both the original and current game, the Bayes player assumes that asset re-

turns are i.i.d. and follow a normal distribution with mean μ and covariance matrix Σ; see
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Appendix A.2 for an exact specification of the model.

We modify the Bayes player in two ways: we alter the prior distribution and we use the

MCMC algorithm. In the original game, the Bayes player assumes a uniform prior distribu-

tion on μ and Σ; where the distributions are truncated to include all ‘reasonable’ parameter

values. This allows equal probability, a priori, over the range of possible parameters, re-

flecting a diffuse prior distribution. In our current experiment, we assume diffuse conjugate

prior distributions for μ and Σ or

μ ∼ N
(
μ, τ 2I

)
, (8)

and

Σ−1 ∼ Wishart (ν, SS) , (9)

where μ̄ = 0, τ 2 = 100, SS = I, ν = 5, and I is an identity matrix. The intuition is as follows.

The prior distribution for a model parameter, such as μ, is considered to be conjugate, if

the resulting distribution, conditional on the data and the remaining parameters is the same

type of distribution as the prior distribution, (e.g. if the prior for μ is a Normal distribution,

then the distribution for μ, conditional on Σ and the data is also a Normal distribution). By

picking appropriate values for τ 2, ν and SS, these distributions can be such that they are

diffuse, and have no impact on the final parameter estimates. Both the uniform prior and

the diffuse conjugate prior are equivalent with regards to the information they bring to the

analysis. However, the conjugate prior makes it easier to do the MCMC calculations. While

the calculations could still be done with a uniform prior, they would be more cumbersome.
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Hence the reason for choosing the conjugate prior is purely computational. See Bernardo

and Smith (1994) for a more complete discussion of prior distributions. See Appendix A.2

for a discussion of how both model specifications are similarly diffuse.

The most important difference between the original experiment and our experiment is

the use of the Markov Chain Monte Carlo (MCMC) algorithm to estimate the expected

utility; see Gilks et al. (1998) for a discussion of the MCMC algorithm. In the original

experiment, the Bayes player used an Importance Sampling scheme, based on 500 draws

from a proposal distribution to approximate the expected value of (3) (see Appendix A.1

for more details); while the Importance Sampler has attractive computational properties,

it can result in integral estimates with unbounded or extremely large variances, which is

problematic because the weights for points with high posterior probability can be large,

leading to infrequent selection from the proposal distribution; see Robert and Casella (1998)

and Bernardo and Smith (1994).

To contrast the two inference approaches, the MCMC algorithm generates samples from

the predictive density and use these draws to approximate the expected utility integral, where

the Importance Sampling scheme generates draws from an alternative density and reweights

these draws in order to approximate the integral with respect to the predictive density. In

other words this MCMC algorithm samples directly from the predictive density, where as the

Importance Sampler obtains samples from the predictive density in a round about way. An

important difference between our implementation of the MCMC algorithm and Markowitz

and Usmen’s (2003) implementation of the Importance Sampler has to do with the number

of samples that were used. In the original experiment, they used only 500 samples, where as
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we use 25,000 draws from the predictive density. The relatively small number of draws, with

respect to the dimension of the space being integrated over (44 dimensions), is one potential

reason for the differences in the two experiments.5

IV Results of the Rematch

The results using the MCMC algorithm for inference and using the original performance crite-

ria (i.e. evaluating each weight using the proposed ‘true’ parameter values as the predictive

mean and covariance as detailed in (4)), are markedly different from the results reported

from the original experiment. In the original experiment, the Michaud player won for ev-

ery ‘truth’ and for every value of λ in that the portfolio weights reported by the Michaud

player gave a larger average utility over the 100 histories as evaluated by the referee. In the

new experiment, the Bayes player wins for 7 out of the 10 histories when λ = 0.5, and the

Michaud player wins for 8 out of 10 histories and for 6 out of 10 histories when λ = 1 and 2

respectively; see Table 1 for a summary of the results.6

[Insert Table 1 About Here]

The main difference between the original experiment and the current experiment comes

from the choice of inference used by the Bayes player (i.e., the difference between using the

Importance Sampling and the MCMC algorithms to approximate the expected utility). As

a result, investors should use caution when determining which approach to use for selecting

an optimal portfolio in practice.
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In the original game, the referee chooses a criteria that handicaps the Bayes player and

that reflects an investment strategy that is much different from the investment strategies

pursued in practice. Specifically, the players select an optimal set of weights based on a

history and then the referee uses a criteria that is not consistent with that history (he/she

evaluates the weights using the ‘true’ mean and covariance, which are different from the

predictive mean and covariance associated with the history). This would be reasonable, if

the investor does not expect future returns to match historical returns. Since this is not

the case in the original game, the Bayes player is handicapped as he/she is operating under

the assumption that the future returns distribution will match the past returns distribution,

and it is interesting that even with this handicap the Bayes player performs at a comparable

level to the Michaud player.

From an investment perspective, the referee’s criteria implicitly assumes that each player

is going to take their derived weights and hold a portfolio based on these weights until

all uncertainty from the parameter estimates is gone. Stated differently, the referee is

determining the performance of a set of portfolio weights by assuming that each player will

hold their respective portfolio forever (or at a minimum for the rest of the player’s life). It

is inconceivable that a real world investor will never adjust their portfolio.

IV.i One Period Ahead Asset Allocation

In order to explore the performance of these two approaches in a setting that is more rel-

evant to an investor with a shorter investment horizon and where the Bayes player is not

handicapped, we conducted a new experiment. In this out of sample asset allocation game,
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the referee assumes that the investor will only hold the portfolio for one period and where

the referee draws returns that are consistent with the history that has been presented to the

player (i.e. the return is drawn from the predictive density, given the history).

To be more precise, for each history Hik, both players calculate weights as described in

Sections II and III. The referee draws 100 asset returns for the next period (t = 217) from

the predictive distribution

rik217 ∼ N
(
μ|Hik

, Σ|Hik

)
,

and using the Michaud players weights, ωMHik
, and Bayes players weights, ωBHik

, the referee

calculates the portfolio return for each draw

RMik = ω′
MHik

rik217 and RBik = ω′
BHik

rik217. (10)

The referee calculates the players utility for each ‘truth’ (for each i), by calculating the mean

and variance of the one-step ahead portfolio returns and putting that into the quadratic

utility function, or given a λ and estimates of the portfolio mean and variance calculated in

the usual way

μporti =
1

10, 000

∑
kt

Rikt and Σporti =
1

10, 000

∑
kt

(Rikt − μporti)
2 . (11)

Each player’s utility is given by

E[uλ] = μport − λΣport. (12)
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In the one-step ahead asset allocation game, using the draws from the ‘predictive’ density,

the Bayes player wins for all of the ‘truths’; the Bayes player has a higher expected utility

for 10 out of 10 ‘truths’ for all of the utility functions, see Table 2 for a summary.

[Insert Table 2 About Here]

The results the experiment show that the Bayesian approach will outperform and potentially

dominate the resampling approach, depending on the perspective that the investor wants

to adopt. If the investor assumes that the distribution of future returns will match the

distribution of past returns and the investor has a short investment time horizon, then they

should avoid the resampling approach; alternatively, if there is some ambiguity about the

distribution of past returns and the investor has a very long time horizon, the resampling

approach has some advantages.

IV.ii Interpreting the relative performances: Bayes vs. Resam-

pling

In replaying the original game, it appears that there may be a pattern in the performance

of the two approaches. The difference in the average expected utility between the two

approaches across all of the histories is influenced by the investor’s risk aversion (or λ). In

the original game, as the investor’s risk aversion increases (λ gets bigger), the resampling
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approach performs better on average, see Figure 2.

[ Insert Figure 2 About Here]

In contrast, although the Bayes approach dominates in the new game, the level of dominance

increases as the investor becomes more risk averse.

The influence of risk aversion on the difference in performances is much larger for the new

game than for the original game and it is in the opposite direction. The economic reason

for these differences can be understood by investigating how the average portfolio mean

and the average portfolio variance (the two components of the quadratic utility function)

change as a function of λ. As the investor becomes more risk averse, the average portfolio

mean and variance, for both approaches across both games, decreases as we would expect.

However, the decrease in the average variance and the average mean for the Bayes approach is

larger (particularly the decrease in the average variance) when compared with the resampling

approach, see Table 3. This gives us the key insight that while the resampling approach tends

to result in a larger average portfolio mean, this comes at the expense of a larger average

portfolio variance, and this difference in the average variance increases dramatically as an

investor’s risk aversion increases.

[Insert Table 3 About Here]

The two games can be framed in terms of the investment time-frame: a long-term investor
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in the original game and a short-term investor in the new or one-step ahead game. While

investors in both games use the same amount of information (216 data points) to find their

weights, the referee uses very different criteria for each game. In the original game the referee

evaluates weights using the ‘true’ parameters, which implies that the investor is holding the

portfolio for a very long time. By using the ‘true’ parameters, the referee is ignoring the

extra variance that comes from the uncertainly about the estimates of the average return. As

a result the average portfolio variance for the original or long-term game are smaller than the

average portfolio variance from the second or one-step ahead game, again see Table 3. The

most striking difference between the two games is in terms of the average portfolio variance.

For both the Bayes and resampling approach, the average portfolio variance is roughly twice

as large for the new game when compared with the original game. In the original game,

the smaller variances from the Bayes strategy does not compensate for the relative change

in mean, which results in the resampling strategy performing slightly better as λ increases.

However, for the new game the average portfolio variances are roughly doubled while the

average portfolio means are only marginally better (on the order of 1.2 times larger). As

a result the naturally smaller portfolio variance of the Bayes strategy becomes increasingly

important and leads to the dominate performance of the Bayes approach.

All investors will have to deal with making asset allocation decisions in the face of both

the unexplained uncertainty and uncertainty about the mean. In addition, the dramatic dif-

ference in the average portfolio variance obtained by using the Bayes approach demonstrates

the value of the Bayes approach as the uncertainty facing the investor increases and/or as

the investor becomes more averse to risk.
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V Conclusion

Our paper replays the investment simulation game that pits a Bayesian investor against an

investor that uses the resampling approach advocated by Michaud (1998). In the original

game, Markowitz and Usmen (2003) find that the resampling player always wins. We level the

playing field by allowing the Bayes player to use a more standard technique to approximate

the moments of the predictive distribution. With this minor change, the game ends up

essentially in a tie.

We also offer an investment game that more closely approximates the practical situation

that investors face - a one-step ahead portfolio allocation. Here our results depend on the

distributional assumptions. If the future distribution is just like the past, the Bayes player

always wins. However, if there is a change in the distribution (i.e. the predictive distribution

is different from the historical distribution), the resampling player shows advantages.

The dominate performance of the Bayes player, for the one-step ahead game, comes about

because the investor faces more uncertainty (they have uncertainty about both the variability

of the returns and about their ability to predict the mean) and because the Bayes approach

results in a smaller average portfolio variance as the investor’s risk aversion increases.

The Bayesian and resampling literature consider a broader interpretation of risk by fo-

cusing on parameter uncertainty. The Bayesian handles parameter uncertainty by averaging

over parameter values in a way that is consistent with the data, the assumed distribution,

and the prior beliefs, whereas the resampler resorts to a Monte Carlo simulation to deal with

the uncertainty.
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There is a third level of risk sometimes referred to as ambiguity. One can think of this

as uncertainty about the distribution or uncertainty about the basic model. That is, while

we might have a prior for a particular distribution, there are many possible distributions.

Our results show that the resampling approach shows some robustness to distributional

uncertainty. Our future research will focus on a Bayesian implementation to handled this

third type of certainty.
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Appendix: Details for Bayesian analysis

A.1 Posterior Moments

Conditional on diffuse priors and the data gives a posterior density, f (μ, Σ|H), for each

history. The predictive distribution, for the next observation in a history, is obtained by

integrating out the model parameters with respect to the posterior density,

f (rn+1|H) =
∫

μ,Σ

f (rn+1|μ, Σ) f (μ, Σ|H) dμdΣ. (A-1)

As shown in Markowitz and Usmen (2003) and Harvey et al. (2006), the expected value

of the utility given in (3) and a specific history H becomes,

E [uλ (ω, rn+1) |H ] = ω′μ̂ − λω′Σ̂ω − λω′Cov (μ − μ̂)ω, (A-2)

where μ̂ is the predictive mean, which is equal to the posterior mean,

μ̂ = E [rn+1|H ] = E [μ|H ] , (A-3)

and where the predictive covariance matrix can be rewritten as the sum of the posterior

mean of Σ and the posterior mean of the covariance of μ − μ̂, or

Σ̂ = E [Σ|H ] and Cov (μ − μ̂) = E
[
(μ − μ̂) (μ − μ̂)′ |H]

. (A-4)

Parameter uncertainty is taken into account by including this extra term Cov (μ − μ̂) in

the predictive covariance.
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A.2 Model Specification

The Bayes player assumes that all returns follow a normal probability model, or

f (r|μ, Σ) = |Σ|−1

(
1

2π

) p
2

exp

[
−1

2
(r − μ)′ Σ−1 (r − μ)

]
, (A-5)

where p is the number of assets, and assumes a set of diffuse conjugate priors for μ and Σ,

or

μ ∼ N
(
μ, τ 2I

)
, (A-6)

and

Σ−1 ∼ Wishart (ν, SS) . (A-7)

By choosing diffuse hyper-parameters, the conjugate prior specification can be made to mimic

the uniform prior specification used in the original experiment. (For example by letting

μ = 0 and letting τ 2 be large, the prior for μ becomes essentially constant over the range

of ‘reasonable’ parameter values. The same can be obtained for Σ−1, by letting ν = p + δ,

letting SS = δI and letting δ be small.) To illustrate how both modeling approaches can

result in equally ‘objective’ diffuse priors over the range of ‘reasonable’ parameters values,

consider a prior on μ. When there is only one asset, μ is a scalar. If we assume that the

range of ‘reasonable’ values for μ is between −100 and 100, then the uniform prior is given

by

fUniformPrior(μ) =
1

200
I {−100 < μ < 100} , (A-8)

where I{} is the indicator function, see Figure 3 for a graphical representation. If we assume

a conjugate prior for μ, which is the Normal distribution, and set the hyper-parameters (or

parameters of this prior distribution) to be equal to 0 for the mean and τ 2 for the variance,

or

fConjugatePrior(μ) =
1√
2πτ

exp

{
− μ2

2τ 2

}
, (A-9)
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then the difference between these two prior specifications, for the ‘reasonable’ values for μ

disappears as τ 2 increases, see Figure 3 for an illustration. Similar prior specifications can

be choose for the covariance matrix Σ.

[Insert Figure 3 About Here]

A.3 Approximating Expected Utility

In order to approximate the expected utility, with respect to the predictive distribution, the

Bayes player generate samples from the posterior distribution

μm, Σm ∼ f
(
μ, Σ|H, μ, τ 2, n, SS

)
, (A-10)

and in turn generate samples from the predictive distribution for each draw from the posterior

distribution,

rm,�
n+1 ∼ f (r|μm, Σm) . (A-11)

In the implementation for the new experiment, the Bayes player ran the MCMC algorithm

for a burn-in of 10,000 iterations (to allow the MCMC algorithm converge in distribution)

and then generated 25,000 draws from the posterior and predictive densities (i.e. one sample

from the predictive density for each posterior draw). The approximation of the expected

utility for the Bayes player is calculated as follows,

E [uλ (ω, rn+1) |H ] ∼= 1

25, 000

∑
m,�

ω′rm,�
n+1 − λ

(
ω′ (rm,�

n+1 − μ̂
))2

, (A-12)

where

μ̂ ∼= 1

25, 000

∑
m,�

rm,�
n+1. (A-13)

For each history, the Bayes player finds and reports the weights that maximize (A − 12).

25



Notes

1Estimation error has been examined by Bawa et al. (1979), Britten-Jones (1999), Chen and Brown

(1983), Frost and Savarino (1986), Jobson and Korkie (1980 and 1981), Jorion (1985 and 1986), Klein and

Bawa (1976), and Michaud (1989).

2Several authors have considered resampling including Bey et al. (1990), Broadie (1993), Christie (2005),

diBartolomeo (1991 and 1993), Herold and Maurer (2002), Jorion (1992), Harvey et al. (2006), Michaud

(2001), Mostovoy and Satchell (2006), and Scherer (2002, 2006).

3This approach is guaranteed to produce weights that result in an expected utility that is less than

the maximum expected utility because the resampled weights will be different than the Bayes weights (see

Harvey et al. (2006) for a discussion).

4 Each resampled efficient frontier is based on µR
ikm and ΣR

ikm, which are the standard estimates based

on HR
ikm

5In order to explore the robustness of the results from the original experiment, we opted to use the MCMC

algorithm and have the Bayes player generate samples from the posterior distribution and in turn generate

samples from the predictive distribution for each draw from the posterior distribution. (Even though we are

using conjugate priors, the joint, posterior density of µ and Σ is non-standard and cannot be integrated out

analytically; hence the need to take a sampling based approach (MCMC) to integrate out the parameters

with respect to the predictive density.) The approximation of the expected utility for the Bayes player is

calculated by taking the average utility based on the draws from the predictive density. For each history,

the Bayes player finds and reports the weights that maximize this average utility; see Appendix A.3 for the

exact formulas.

6Table 1 follows the same format as Table 3 in Markowitz and Usmen (2003).
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Glossary

Conjugate prior - a prior distribution for a parameter, where the resulting full-

conditional distribution (the distribution conditional on the remaining parameters and

he data) is from the same family of distributions as the prior distribution. For example,

for the models considered in this paper, if we assume μ follows a Normal distribution,

before observing any data, then the distribution of μ conditional on Σ and the data is

a Normal distribution.

Diffuse Bayesian analysis - Summary of parameter distributions, assuming a Bayesian

model, where the prior distributions are chosen to be vague or non-informative.

Diffuse prior - a prior distribution that is vague or non-informative, where the infor-

mation provided by the data dominates the information provided in the prior.

Hierarchical Bayesian model - a statistical model that is specified in a hierarchical

fashion; typically the distribution of the observed data is given conditional on a set

of parameters (random variables) and the (prior) distribution of these parameters is

given conditional on another set (or hierarchy) of parameters.

Importance Sampling - A Monte Carlo technique for sampling, where samples are

drawn from a proposed distribution and then are re-weighted according to a target

distribution in order to obtain a sample from the target distribution.

Inverse Wishart distribution - a family of distributions for covariance matrices.

To contrast with the Normal distribution, if excess returns r are Normally distributed,

this describes the distribution of returns; in contrast an Inverse Wishart distribution

describes the distribution of Covariance matrices.

Markov Chain Monte Carlo (MCMC) - Monte Carlo integration using Markov

Chains. Samples from a distribution of interest (for example a posterior distribution)
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are obtained by repeatedly sampling from the distribution of each parameter, condi-

tional on the most recently sampled values of the remaining parameters and the data.

This forms a Markov Chain, that results in samples from the distribution of interest.

Predictive distribution (density) - The distribution of the data in the future,

conditional on all of the observed data and the prior distributions. For example,

the distribution of tomorrow’s excess returns, conditional on a set of historical excess

returns and prior beliefs.

Prior distribution - a distribution placed on a parameter before any data is observed.

This can represent an expert’s prior opinion or be vague and non-informative.

Posterior distribution - The distribution of the model parameters, conditional on all

of the observed data and the prior distributions. For example, the distribution of the

average excess returns μ and the covariance matrix Σ conditional on a set of historical

excess returns and prior beliefs.
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Original Parameters 
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Figure 1: Graphical representation of the histories and truths used both in this paper and
in Markowitz and Usmen (2003)
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ahead game).
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be used as priors for μ. A normal density can be a non-informative prior by setting the
standard deviation to be large. Markowitz and Usmen (2003) use a uniform density as their
non-informative prior.
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Table 2: EU calculated using one-step ahead draws from predictive distributions.
This table shows averages of expected utility calculated from one-step ahead draws from
predictive distributions for each player. Specifically, for risk aversion λ = 0.5, 1.0, and 2.0,
as indicated by the row labeled “Lambda”, and for each player, and as indicated by the row
labeled “Player”.

λ: 0.5 0.5 1 1 2 2
Player: Bayes Michaud Bayes Michaud Bayes Michaud
Eval. by: Referee Referee Referee Referee Referee Referee
Truth 1: 0.01929 0.01926 0.01612 0.01597 0.01150 0.01054
Truth 2: 0.00968 0.00959 0.00742 0.00703 0.00439 0.00348
Truth 3: 0.00595 0.00578 0.00457 0.00425 0.00255 0.00168
Truth 4: 0.01491 0.01472 0.01278 0.01248 0.00962 0.00869
Truth 5: 0.01078 0.01067 0.00778 0.00764 0.00394 0.00326
Truth 6: 0.00667 0.00660 0.00472 0.00455 0.00212 0.00153
Truth 7: 0.00628 0.00615 0.00430 0.00416 0.00176 0.00129
Truth 8: 0.00826 0.00790 0.00639 0.00610 0.00372 0.00290
Truth 9: 0.00852 0.00821 0.00632 0.00608 0.00351 0.00284
Truth 10: 0.00639 0.00610 0.00445 0.00408 0.00201 0.00050

Grand mean 0.00967 0.00950 0.00749 0.00723 0.00451 0.00367
Std. Dev. 0.00434 0.00438 0.00395 0.00397 0.00333 0.00330
No. times 10 0 10 0 10 0
better
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Table 3: Summary of Average Portfolio Mean and Variance, by Game and ap-
proach. The striking difference between the two games is the difference in the average
portfolio variance. For both Bayes and resampling approach, the average portfolio variance
is roughly twice as large for the new game (one-step ahead) when compared with the original
game, again see Table 1. In the original game, the smaller variances from the Bayes strat-
egy does not compensate for the relative change in mean, which results in the resampling
strategy performing better. However, for the new game, the average portfolio variances are
roughly doubled while the average portfolio means are only marginally better (on the order
of 1.2 times larger). As a result the naturally smaller portfolio variance of the Bayes strategy
becomes increasingly important. We feel that the new game is the proper way to asses the
performance of both of these methods as both strategies are calibrated conditional on the
historical data and they have to account for both uncertainly due to unexplained randomness
and uncertainty due to our inability to predict the mean.

λ = 0.5 λ = 1 λ = 2

Original Game

Bayes: Average Portfolio Mean 0.0102 0.0094 0.0081
Resampling Ave. Portfolio Mean 0.0100 0.0098 0.0091
Bayes: Average Portfolio Variance 0.0026 0.0020 0.0013
Resampling Ave. Portfolio Variance 0.0025 0.0022 0.0017
Bayes: Average Portfolio Mean 0.0124 0.0113 0.0095

One-Step Resampling Ave. Portfolio Mean 0.0120 0.0117 0.0109
Ahead Game Bayes: Average Portfolio Variance 0.0054 0.0038 0.0025

Resampling Ave. Portfolio Variance 0.0049 0.0045 0.0036

35


