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1. Introduction

Time-series (TS) momentum strategies are based on two main premises. First, expected

returns vary over time. Second, the signs of expected returns have some degree of persistence.

If the expected return is positive (negative) this month, then it is more likely to remain

positive (negative) next month than to flip sign. TS momentum strategies attempt to exploit

such variation and persistence in expected returns, where it exists, by taking long positions

in “uptrend” phases and short positions in “downtrend” phases. In uptrend or downtrend

phases, returns will tend to have similar signs—positive or negative, respectively—and so

TS momentum strategies that take positions having the same sign as some lookback horizon

of trailing returns will tend to place good bets.

The premise of time-varying expected returns has extensive support in the literature

(see, e.g., Fama and French, 1988, and Cochrane, 2011, among many). The premise of

persistent trends also has support in the literature, which documents that asset returns

measured over the recent past are positively correlated with future returns (Jegadeesh and

Titman, 1993; 2001, Asness, 1994, Conrad and Kaul, 1998, Lee and Swaminathan, 2000, and

Gutierrez and Kelley, 2008) and that these momentum effects are stable across assets and

countries (Rouwenhorst, 1998, Griffin, Ji, and Martin, 2003, Israel and Moskowitz, 2012,

and Asness, Moskowitz, and Pedersen, 2013). Recent studies provide evidence that TS

momentum strategies can successfully exploit these trends (Moskowitz, Ooi, and Pedersen,

2012; Georgopoulou and Wang, 2017; Ehsani and Linnainmaa, 2019).

Unless trend is perennial in one direction, however, eventually trend will break down.

These breaks, or “momentum turning points”, mark a reversal in trend from uptrend to

downtrend or vice versa. At and after turning points, TS momentum strategies are prone to

place bad bets because they rely on observations of realized returns, which reflect a mixture

of different trend regimes and noise.

The speed (or sensitivity to recent data) of the momentum signal balances the tension

between reducing the impact of noise and reacting quickly to turning points. This tension

plays out differently for different speeds. Either the momentum signal attempts to reduce the

influence of noise by having a relatively long lookback window (e.g., 12 months) but thus is

slow to react to a turning point (Type II error of missed detection), or the momentum signal

attempts to be fast to react to a turning point by having a relatively short lookback window

(e.g., 1 month) and therefore is more influenced by noise (Type I error of false alarm).

We develop a simple autoregressive model of expected returns to examine connections

between the performance of different speeds and the following unobservable variables: trend
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(persistence in expected returns), turning points, and noise levels in realized returns.1 The

literature has documented that TS momentum strategies based on slow momentum (i.e., the

standard 12-month signal) tend to perform better than strategies based on fast momentum

(e.g., the 1-month signal). Our model indicates that when the slow strategy outperforms

the fast strategy in the long run, it is because expected returns are relatively persistent

and realized returns are relatively noisy. Yet in the short run after turning points, higher

persistence translates into short-run average gains for the fast strategy, while both higher

persistence and higher noise translate into higher losses for the slow strategy. Thus, the

same conditions that make the slow strategy attractive overall relative to the fast strategy

can also make it prone to suffer more around turning points and, at these times, the fast

strategy can be more effective.

These connections suggest that the union of information embedded in slow and fast

strategy positions can be useful in detecting market turning points. When bets indicated

by slow and fast strategies disagree, the intuition is that the market is more likely to be at

a turning point. The agreement of slow and fast strategies to go long (short) is more likely

to indicate the market is in the midst of an uptrend (downtrend). We find this intuition is

not only supported by our model, but also consistent with the returns behavior of both the

U.S. and international stock markets after each of the four different phases, or market cycles,

defined by the up or down directions of each of the slow and fast momentum strategies.

Figure 1 summarizes, over a recent 50-year period of the U.S. stock market, the condi-

tional behavior of the average, volatility, and skewness of returns in months following four

market cycles and the monthly relative frequency of such states.2 When both slow and fast

momentum agree on the direction of trend, we call it a “Bull” or “Bear” state, depending on

whether the agreement is to take a long or short position, respectively. These labels loosely

map to phases of uptrend and downtrend: Bull states are followed by relatively high average

returns with low volatility, and Bear states are followed by negative average returns with the

highest relative volatility.

When slow and fast momentum disagree, we call it a “Correction” state if slow momentum

indicates a long position and a “Rebound” state if slow momentum indicates a short position.

Similarly, these labels loosely map to the potential occurrences of turning points from uptrend

to downtrend and vice-versa. Correction states are followed by deteriorating average returns,

increased volatility, and severe downside outcomes—possibly a lead up to a Bear state.

1We thank an anonymous referee for suggesting this approach. See Section 2.2 for model details and
analysis.

2For most of the paper, we use a recent 50-year period for consistency with later analyses in which we
use earlier data to warm up dynamic strategies for out-of-sample evaluation. In Internet Appendix E, we
report results based on a longer evaluation period beginning in 1927, from which we draw similar inferences.
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Rebound states are followed by average returns and skewness similar to Bull phases, but

with higher volatility—possibly a lead up to a Bull state. Lastly, Corrections and Rebounds

are significant in frequency and combined occur more than one-third of the time covered in

our analysis.

Figure 1: U.S. Stock Market Cycles
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Notes: This figure reports (a) the conditional average, (b) the conditional volatility and (c) the conditional
skewness of monthly aggregate U.S. stock market excess returns, based on the market cycle state in the prior
month, over the 50-year evaluation period from 1969-01 to 2018-12. A month ending at date t is classified
as Bull if both the trailing 12-month return (arithmetic average monthly return), rt−12,t, is nonnegative and
the trailing 1-month return, rt−1,t, is nonnegative. A month is classified as Correction if rt−12,t ≥ 0 but
rt−1,t < 0; as Bear if rt−12,t < 0 and rt−1,t < 0; and as Rebound if rt−12,t < 0 but rt−1,t ≥ 0. The figure also
reports (d) the relative frequency of these cycles over the same evaluation period. Market excess returns are
U.S. excess value-weighted factor returns (Mkt-RF) from the Kenneth French Data Library.

These four market cycles implied by slow/fast momentum positions appear to be useful

proxies of potential trends and turning points in the macroeconomy as well as in the stock

market.3 We study the behavior of 15 major macroeconomic indicators from the three broad

3One can convert the observations from Figure 1 into a predictive TS regression of excess market returns
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categories of economic activity, risk, and survey-based variables. We find that surprises in

these variables exhibit distinct differences across these market cycles. For instance, employ-

ment, consumer sentiment, and stock market liquidity all deteriorate more than expected

during Bear cycles and improve more than expected during Bull cycles. Corrections and

Rebounds show neither significant positive nor negative surprises, consistent with the notion

that these two cycles may be signaling turning points.

Motivated by this evidence, which complements the implications from our model, we form

and analyze TS momentum strategies of various intermediate “speeds” by blending slow and

fast momentum strategies with various weights on each. Rather than going decisively long or

short following Correction and Rebound phases according to the slow (SLOW) or fast (FAST)

strategies, we find empirically that scaling back positions after periods of disagreement may

be beneficial. When SLOW and FAST disagree, and therefore specify opposite positions

(one long and the other short), this could indicate a turning point that SLOW has failed

to reflect: a Type II error. Or, the market might still be in a trend phase and FAST is a

false alarm: a Type I error.4 If both errors are likely, then intermediate-speed strategies,

which blend opposing positions to (partially) offset one another, can reduce exposure to the

downside associated with turning points.

We investigate static intermediate speeds, which are fixed-proportion blends of slow and

fast strategies, and highlight three findings. First, we examine return and volatility risk

characteristics. We show analytically that intermediate-speed momentum strategies will

have higher Sharpe ratios than the average Sharpe ratios of slow and fast strategies. Our

results explicitly link this behavior to the volatility of returns following turning point states

(Corrections and Rebounds). Consistent with these results, intermediate-speed strategies

empirically exhibit the highest Sharpe ratios across all speeds when applied to the aggregate

U.S. stock market. In particular, intermediate-speed portfolios scale down positions after

Correction and Rebound months, reducing exposure to volatile months without surrendering

average returns in comparison to SLOW and FAST.

Second, we shed new light on the drivers of market beta and alpha of TS momentum

strategies of different speeds. Recent studies have argued that the profitability of TS momen-

tum strategies is predominantly attributed to their static (average) tilts.5 Empirically, we

document that TS momentum strategies of all speeds on the U.S. stock market have positive

average exposures (i.e., going long more often than short), yet their market betas are lower

onto four dummy variables corresponding to our four market states (without an intercept term) to evaluate
statistical significance of returns following each state. Likewise, one can regress squared errors from such a
regression onto these dummy variables to assess the explanatory power of each state for volatility risk.

4See Harvey and Liu (2020) for a discussion of the tradeoffs of Type I and Type II errors.
5See Goyal and Jegadeesh (2017) and Huang et al. (2019).
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than suggested by these exposures—beta estimates nearer to zero for slow-to-intermediate

speeds and negative for faster speeds. Our analysis reveals that this seeming disparity arises

from the ability of these TS momentum portfolios to time volatility states. We derive a novel

model-free decomposition of beta into the sum of three components: (i) a static component,

which reflects the average market position of the strategy; (ii) a market-timing component,

which reflects covariance between strategy weights and subsequent market returns; and (iii)

a volatility-timing component, which reflects covariance between strategy weights and sub-

sequent squared market return deviations from their mean. In addition, we derive a related

decomposition of alpha into the sum of two components: market timing and volatility tim-

ing. Empirically, we estimate that market timing drives about two-thirds of the alpha of TS

momentum strategies on the U.S. stock market over a recent 50-year period and volatility

timing drives the remaining one-third.

Third, we provide new insights on the tail behavior of TS momentum strategies of dif-

ferent speeds through the lens of momentum turning points. By reducing market exposure

following Corrections, intermediate-speed strategies exhibit more desirable tail-risk char-

acteristics. We show analytically that the skewness of an intermediate-speed momentum

strategy is scaled and shifted relative to the average skewness of SLOW and FAST, with the

shift in the same direction at its Sharpe ratio: toward higher (more positive, less negative)

skewness whenever the intermediate-speed Sharpe ratio is positive.

We also introduce dynamic strategies whose speeds may vary month-by-month depending

on observed market cycles.6 Turning points from up to down may have different properties

than turning points from down to up. For example, after Corrections (when SLOW is long

and FAST is short), the likelihood of a turning point false alarm (Type I error) might

dominate, while after Rebounds (when SLOW is short and FAST is long), the likelihood of

missed detection (Type II error) might dominate. In this case, a dynamic-speed strategy that

is slower after Corrections (long, but possibly scaled down) and faster after Rebounds (long,

but possibly scaled down) could be effective. We derive analytical expressions for the state-

dependent speed rule which yields the maximum Sharpe ratio. We use these expressions

to estimate the speed rule from historical returns and then evaluate its performance out-of-

sample. Empirically, we find that this implementation can efficiently track the best possible

state-dependent performance.

Lastly, to test the external validity of our findings for the U.S. stock market, we examine

the empirical performance of TS momentum strategies of various static and dynamic speeds

6Our approach is not to be confused with moving average crossovers. Levine and Pedersen (2016) show
that moving average crossovers are essentially equivalent to static blends of time-series momentum strategies.
Moreover, Hurst, Ooi, and Pedersen (2013) show that the returns of trend-following strategies such as
Managed Futures funds and CTAs can be explained by static blends of time-series momentum strategies.
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across 20 international equity markets. As predicted by our analytical results, the Sharpe

ratio of intermediate-speed strategies are higher than the average of the Sharpe ratios of

SLOW and FAST uniformly across all markets. In addition, the Sharpe ratio of the dynamic-

speed strategy is higher than the highest static-speed strategy for most countries.

Our paper is organized as follows. In Section 1.1, we discuss related literature. In Sec-

tion 2, we define elementary TS momentum strategies, develop a model to analyze their

performance drivers, introduce four market cycles derived from the positions of these strate-

gies, and link these cycles to macroeconomic activity. Section 3 explores static blends of slow

and fast momentum strategies and presents a number of analytical results that help char-

acterize mean returns, volatility and skewness. We develop beta and alpha decompositions

and analyze market-timing and volatility-timing components. In Section 4, we analyze dy-

namic blends of slow and fast momentum strategies and present a cycle-dependent strategy

that maximizes the Sharpe ratio. In Section 5, we present empirical results across inter-

national equity markets. Although our paper does not speak directly to the foundations of

momentum, our findings suggest new avenues for foundational studies.7 We discuss potential

avenues and offer concluding remarks in Section 6.

1.1. The Setting

TS momentum has been the subject of several recent articles. Moskowitz, Ooi, and

Pedersen (2012) find substantial profitability for 12-month TS momentum strategies that

employ volatility targeting and document return predictability evidence across lookback

horizons from 1 to 12 months. We focus on the trade-off between TS momentum at the slow

and fast ends of this range and document the merits of static and time-varying slow/fast

blends without volatility targeting.

Huang et al. (2019) argue that predictability of 12-month TS momentum as captured by

forecasting regressions does not appear to be statistically significant and, accordingly, the

profitability of a diversified 12-month TS momentum portfolio can be largely attributed to

7Explanations of momentum rely on either behavioral or rational foundations. Studies on behavioral
foundations include Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998),
Odean (1998), Hong and Stein (1999, 2007), Gervais and Odean (2001), Grinblatt and Han (2002), Barberis
and Shleifer (2003), Chan (2003), Cross et al. (2005), Grinblatt and Han (2005), Cross, Grinfeld, and
Lamba (2006), Frazzini (2006), Shefrin (2008), Chui, Titman, and Wei (2010), Haldane (2010), Dasgupta,
Prat, and Verardo (2011), Bandarchuk and Hilscher (2012), Antoniou, Doukas, and Subrahmanyam (2013),
Avramov, Cheng, and Hameed (2013), and Chen and Lu (2013). Studies on rational foundations include Lo
and MacKinlay (1990), Carhart (1997), Berk, Green, and Naik (1999), Ahn et al. (2002), Johnson (2002),
Lewellen (2002), Allen, Morris, and Shin (2006), Watanabe (2008), Banerjee, Kaniel, and Kremer (2009),
Verardo (2009), McLean (2010), Cespa and Vives (2012), Makarov and Rytchkov (2012), Vayanos and
Woolley (2012, 2013), Aretz and Pope (2013), Jordan (2013), Liu and Zhang (2013), and Zhou and Zhu
(2013).
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its static tilt (net long positions). We come to a different conclusion. Despite their positive

static (average) tilts, TS momentum portfolios need not have positive betas to the underlying

asset. Applying our decompositions of TS momentum beta and alpha, we document the role

of innate volatility timing in TS momentum strategies, which can explain this disparity

between static tilts and betas and contribute to meaningful alphas. Furthermore, appealing

to static tilts as the primary explanation for TS momentum performance overlooks results

from the conditional CAPM literature. Under the conditional CAPM, static tilts can be

viewed as expected conditional betas, which differ from unconditional betas if any of expected

returns, variances, or covariances change over time8—all active elements in TS momentum

environments.

Goyal and Jegadeesh (2017) also argue that the net dollar exposure (i.e., static tilt) of TS

momentum strategies is a key determinant of their profitability. Specifically, they propose

that adding the net dollar exposure of a TS momentum portfolio to a cross-sectional (CS)

momentum portfolio can reproduce TS momentum profits. This argument does not apply,

however, to the case of TS momentum on a single asset, for which a CS momentum strategy

is either not defined or trivial. In this paper, we focus on single-asset TS momentum.

Although our focus is on TS momentum, our approach shares some themes with the CS

momentum literature. In a TS setting, we employ market cycles as Cooper, Gutierrez, and

Hameed (2004), Daniel and Moskowitz (2016), and Daniel, Jagannathan, and Kim (2019)

do in CS settings. Cooper, Gutierrez, and Hameed use a slow trailing three-year return

to define market states, whereas we use slow and fast trailing returns signals.9 Daniel and

Moskowitz study CS momentum crashes and recoveries and propose a dynamic CS weighting

strategy. Daniel, Jagannathan, and Kim use a two-state hidden Markov model of unobserved

“turbulent” and “calm” states to predict crashes in CS momentum portfolios. We employ

a finer cycle partition of observable states dictated by slow and fast momentum directions

and develop a dynamic TS momentum strategy which blends slow and fast strategies using

cycle-conditional information.

In a TS setting, we evaluate different horizons as Novy-Marx (2012) does in a CS set-

ting. Novy-Marx points out that CS momentum works best at 7-to-12 month horizons.

We demonstrate that shorter horizons are significant predictors of aggregate stock market

returns and can augment slower signals. Liu and Zhang (2008) show in a CS momentum

setting that recent winners load temporarily on the growth rate of industrial production and

that macroeconomic risk can explain more than half of CS momentum profits. This work

8See Jagannathan and Wang (1996), Lewellen and Nagel (2006), and Boguth et al. (2011).
9Specifically, these authors rely on trailing three-year market returns to define two states—“up” and

“down”—and forecast stock momentum consistent with the predictions of behavioral models (Daniel, Hir-
shleifer, and Subrahmanyam, 1998, and Hong and Stein, 1999).
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relates to our findings of distinct macroeconomic linkages to the market cycles determined

by slow and fast TS momentum directions.

Our decompositions of beta and alpha for TS strategies have similarities in form to

decompositions of the differences between unconditional and expected conditional versions

of beta and alpha for CS strategies in the conditional CAPM literature.10 For TS strategies,

expected conditional alpha is not a useful benchmark because the conditional CAPM trivially

holds for any TS strategy applied directly to excess market returns—conditional alpha is zero

in every period. Moreover, decompositions in terms of conditional betas and conditional

expected market returns are functions of an arbitrary conditioning information set, which

is meant to represent what investors observe. In contrast, we decompose (unconditional)

beta and alpha into direct functions of TS strategy weights and market returns, avoiding

expressions dependent on conditioning information.

Our paper also bridges to the literature on volatility-managed (VOM) portfolios sparked

by Moreira and Muir (2017) and further studied by Harvey et al. (2018). VOM portfolio

alpha, by construction, is predominantly driven by volatility timing. Using our alpha de-

composition, we show that TS momentum strategy alpha is driven by both market timing

and innate volatility timing, without enhancements such as scaling by trailing volatility.

2. Momentum Speed and Market Cycles

In this section, we define a collection of TS momentum strategies of different speeds by

blending elementary slow and fast TS momentum strategies in various proportions. We also

define market cycles stemming from the intersection of slow and fast strategies and discuss

their economic linkages to market trends and turning points.

2.1. Characterizing Slow and Fast Strategies

We construct a simple framework to highlight the properties of slow and fast TS momen-

tum. At date t, if the trailing 12-month excess return (arithmetic average monthly excess

return), rt−12,t, is nonnegative, then the slow strategy goes long one unit in the subsequent

month, otherwise, it goes short one unit:

wSLOW,t :=

+1 if rt−12,t ≥ 0,

−1 if rt−12,t < 0.
(1)

10See Jagannathan and Wang (1996), Lewellen and Nagel (2006), and Boguth et al. (2011).
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If the prior 1-month return, rt−1,t, is nonnegative then the fast strategy goes long one unit

in the subsequent month, otherwise, it goes short one unit:

wFAST,t :=

+1 if rt−1,t ≥ 0,

−1 if rt−1,t < 0.
(2)

The realized returns of the slow and fast strategies for month t+1 are rSLOW,t+1 = wSLOW,trt+1

and rFAST,t+1 = wFAST,trt+1, respectively, where rt+1 is the realized underlying market excess

return from date t to date t+ 1.

This strategy design intentionally omits more complex features to be consistent with

recent TS momentum studies (Goyal and Jegadeesh, 2017, and Huang et al., 2019). First,

we map trailing-return signals into binary weights rather than varying weights with signal

magnitudes. Second, the signal is not scaled by trailing volatility as in the work of Moskowitz,

Ooi, and Pedersen (2012) and does not exponentially weight past prices.11 Furthermore, we

choose to operate on elementary strategies to facilitate our study in Section 4 of dynamic

speed selection, which is a challenging and central problem in trend following.

The 12-month trailing return is a relatively slow-moving signal from month to month

since 11 of 12 months of returns (92%) overlap in subsequent signals.12 In contrast, the

1-month trailing return is a relatively fast-moving signal, having no overlapping returns

between subsequent signals. We could have used horizons longer than 12 months to define

slow momentum, but the signal overlap for such horizons in subsequent months would not

differ materially from the high 92% overlap of the 12-month signal. Moreover, 12 months

is the standard horizon analyzed in the TS momentum literature (Moskowitz, Ooi, and

Pedersen, 2012, and Huang et al., 2019, among others). We could have used horizons longer

than one month (e.g., 2 or 3 months) to define fast momentum. However, longer horizons

have significant signal overlap (50% for the 2-month signal and 67% for the 3-month signal),

which materially slows changes in their strategy positions. Moreover, the 1-month horizon is

the shortest at the monthly level of data. For these reasons, we chose 12-month and 1-month

11Note that volatility-targeting may constitute a phenomenon independent from TS momentum (e.g., Kim,
Tse, and Wald, 2016, Moreira and Muir, 2017, and Harvey et al., 2018). In Main Appendix C, we further
compare our approach with that of Moskowitz, Ooi, and Pedersen (2012) and find that our medium-speed
strategy (defined in Section 2.3) has a higher Sharpe ratio and generates alpha with respect to their 12-
month strategy. In addition, trend following is often identified with moving-average crossover strategies,
which exponentially weight past prices, whereas our SLOW and FAST portfolios average past returns. As
shown by Levine and Pedersen (2016), moving-average crossovers and time-series momentum are close to
equivalent. More generally, our focus is on blending strategies with different speeds rather than elaborating
on a particular definition of a single speed.

12Note that we do not skip the immediately lagged month as is done in some momentum strategies on
individual securities in order to avoid short-term idiosyncratic reversals. Our empirical application is stock
indices, for which the immediately lagged returns tend not to exhibit such reversals.
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horizons.13

2.2. A Model of Time-Varying Trend

We can view TS momentum strategies as maps of indirect estimates of expected returns

based on lagged realized returns to portfolio positions. SLOW and FAST map signs of

average trailing realized returns as estimates of signs of expected returns to long or short

positions when such estimates are positive or negative, respectively. The accuracy of such

estimates depends on the persistence of expected returns as well as the influence of noise.

To examine the roles of persistence and noise, we consider a simple first-order autoregressive

process, AR(1), for expected returns. In this model, realized returns are noisy observations

of the AR(1) process. We apply SLOW and FAST to these realized returns and explore

their performance based on different parameterizations of the persistence parameter and the

amount of noise.

Specifically, the unobservable monthly expected excess return process, {µt}, follows

µt = c+ ϕµt−1 + εt, (3)

where c is a scalar, ϕ is a persistence scalar, and {εt} is a sequence of independent and

identically distributed mean-zero normal random variables each having variance σ2
ε > 0.

We assume that persistence is positive (ϕ > 0) to capture the notion of trend, consistent

with our description in Section 1. For example, if last month’s underlying mean return were

positive (µt−1 > 0), then this month’s mean return is more likely to also be positive (µt > 0)

than negative. We also assume ϕ < 1 so that the process is weak-sense stationary, i.e., the

expected return process is time varying but its unconditional mean and autocovariances are

time invariant. Under these assumptions, by standard AR(1) properties, µt has unconditional

expected value E[µt] = c
1−ϕ and unconditional variance Var[µt] = σ2

ε

1−ϕ2 > 0. Let realized

excess returns in each month, rt, be random variables centered around µt, but observed with

noise:

rt = µt + σzzt, (4)

where σz > 0 is the volatility of the noise and {zt} is a sequence of independent and identically

distributed mean-zero normal random variables each having unit variance and independent

13The empirical evidence pertaining the U.S. stock market supports our rationale. Over our 50-year evalu-
ation period, the 3-month TS momentum portfolio showed a higher correlation to 12-month momentum than
to 1-month momentum (43% and 34%, respectively), whereas the correlation of the 24-month momentum
portfolio to 12-month momentum was above 60%. In addition, the turnover of the 1-month signal was twice
as large as the one of 3-month signal, another indication of the differences underlying two apparently similar
strategies.
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of {εt}. Then, the unconditional average return is E[rt] = c
1−ϕ and the unconditional return

variance is Var[rt] = σ2
r , where we define σr =

√
σ2
ε

1−ϕ2 + σ2
z .

We focus on the case in which c = 0 (unconditional mean excess return is zero) to

ensure that our analysis is non-trivial for all choices of persistence and noise parameters. In

contrast, if unconditional mean excess returns were positive (negative), then for sufficiently

small noise σz, realized returns would be predominantly positive (negative), and therefore, a

profitable TS strategy would be trivially almost always long (short). Moreover, for E[µt] = 0,

excess returns on TS momentum strategies are entirely alpha. Therefore, their performance

is exclusively a measure of their ability to time return opportunities because their average

positions are unprofitable in expectation. Thus, expected returns are time varying but zero

on average, deviating away from zero and remaining away with some persistence before

eventually crossing zero to have the opposite sign, where they remain with some persistence

until eventually crossing back, and so on.

Finally, define the noise ratio, θ, as the proportion of variance in realized return rt

contributed by noise zt:

θ =
σ2
z

σ2
r

=
σ2
z

σ2
ε

1−ϕ2 + σ2
z

. (5)

Note that θ ∈ (0, 1). If θ is small, then realized and expected returns are close to each other

and, therefore, realized returns are more informative about the underlying trend (i.e., the

sign of expected returns). If θ is large, then realized returns are dominated by noise and

thereby less informative about the underlying trend.

Proposition 1 characterizes in closed-form the Sharpe ratios of our elementary trend-

following strategies, SLOW and FAST (defined in Section 2.1), in terms of persistence ϕ and

noise ratio θ.

Proposition 1. The (annualized) Sharpe ratios of FAST and SLOW, respectively, can be

expressed in terms of persistence ϕ ∈ (0, 1) and noise ratio θ ∈ (0, 1) as follows:

Sharpe[rFAST,t] =

√
24
π

(1− θ)2ϕ2

1− 2
π
(1− θ)2ϕ2

> 0, (6)

Sharpe[rSLOW,t] =

√√√√ 24
π

(1− θ)2ϕ2

(1−θ)[12(1−ϕ2)−2ϕ(1−ϕ12)]+12θ(1−ϕ)2
(1−ϕ12)2

− 2
π
(1− θ)2ϕ2

> 0. (7)

Proof. See Main Appendix A.

Proposition 1 indicates that as long as there is some persistence (ϕ > 0), both strategies

have strictly positive Sharpe ratios and, therefore, exploit the underlying trend in expected
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returns to generate positive alpha with respect to the buy-and-hold strategy. Because the

Sharpe ratios of SLOW and FAST are continuous functions over the bounded set of persis-

tence and noise parameters, we can analyze these results graphically.

Figure 2: SLOW and FAST Absolute and Relative Performance

(a) Relative Performance as Function of Per-
sistence and Noise
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(b) Performance as Function of Persistence
with Relatively High Noise (θ = 0.8)
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Notes: Figure (a) plots contour levels of the difference between the Sharpe ratios of SLOW and FAST for
various combination of persistence levels and noise ratios. Combinations of persistence and noise ratios in
the upper-right region above the bold curve correspond to a higher Sharpe ratio for SLOW than FAST.
Figure (b) plots Sharpe ratios of SLOW (dashed) and FAST (solid) for various persistence levels and at
noise ratio θ = 0.8.

In Figure 2, we compute and plot the absolute and relative levels of the Sharpe ratios

expressed in Proposition 1 for a range of persistence and noise ratios. Figure 2(a) is a contour

plot of the difference between the Sharpe ratios of SLOW and FAST for all noise levels and

a range of persistence levels.14 This figure reinforces the intuition that for sufficiently high

persistence, SLOW outperforms FAST, and for sufficiently low noise, FAST outperforms

SLOW. The literature has documented that SLOW tends to work better than FAST for

many different asset classes when measured by overall risk-adjusted performance. From

Figure 2(a), we infer that such relative performance would be consistent with a market in

which the excess returns exhibit both relatively high mean persistence and noise. Figure 2(b)

plots the Sharpe ratios of SLOW and FAST for various persistence levels at a relatively high

14We plot persistence above 0.5, however, the patterns evident in the plot extend continuously for lower
persistence levels. We focus on the higher persistence levels to highlight the region where relative performance
switches.
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noise ratio. We infer from this figure that for noisy realized returns the outperformance of

SLOW over FAST accelerates as mean persistence increases.

How do turning points affect the performance of SLOW and FAST? Although expected

returns are unobservable in practice, we can use our model to analyze the impact of (model)

turning points (i.e., changes in signs of model conditional means). Uptrend corresponds to

periods of positive expected returns, {µt : µt > 0}, and downtrend corresponds to periods

of negative expected returns, {µt : µt < 0}. Turning points, therefore, occur whenever

successive values of {µt} change sign.15

Proposition 2. The conditional expected returns of FAST and SLOW, respectively, given

the most recent two (unobservable) consecutive return means are as follows:

E[rFAST,t|µt−1, µt−2] = ϕµt−1 ·
[
2Φ

(
µt−1

σr
√
θ

)
− 1

]
, (8)

E[rSLOW,t|µt−1, µt−2] = ϕµt−1 ·

2Φ

 1
12

(
µt−1 + 1−ϕ11

1−ϕ µt−2

)
σr

√
(1−θ)
12

[
1+ϕ
1−ϕ + 1

12
− 2(1−ϕ12)+(1−ϕ11)2

12(1−ϕ)2

]
+ θ

12

− 1

 ,
(9)

where Φ(·) is the standard normal cumulative distribution function. If µt−1 6= 0, then

E[rFAST,t|µt−1, µt−2] > 0. If µt−1 and µt−2 are each nonzero with different signs and |µt−1| <
1−ϕ11

1−ϕ |µt−2|, then

E[rFAST,t|µt−1, µt−2] > 0 > E[rSLOW,t|µt−1, µt−2]. (10)

Proof. See Main Appendix A.

Proposition 2 provides closed-form expressions for conditional expected excess returns

of SLOW and FAST as functions of the expected returns of the previous two periods. The

condition that µt−1 and µt−2 are each nonzero with different signs means we have encountered

a (model) turning point. Moreover, (10) indicates that, after turning points, FAST tends to

be profitable and SLOW tends to incur losses, on average. The condition |µt−1| < 1−ϕ11

1−ϕ |µt−2|

derives from the conditional expected value of the 12-month signal, 1
12

(
µt−1 + 1−ϕ11

1−ϕ µt−2

)
,

which appears in (9). This condition requires that the magnitude of the conditional expected

value of the 1-month signal, µt−1, was not excessively large compared to µt−2, so that a

single month’s return was not expected to be large enough to flip the sign of the slow

15In subsequent sections, we develop a simple measure of turning points based on observable realized
returns, consistent with our analysis in this section.
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signal. For example, if ϕ = 0.8, and if two month’s ago the expected return was half-a-

standard-deviation above zero, µt−2 = 0.5σr, then these conditions require that the most

recent expected return turned negative but not more than about two-standard-deviations

below zero, µt−1 ≥ −2.3σr. Any turning point with opposite-sign expected returns of equal

magnitude (e.g., −µt−1 = µt−2 = 0.5σr) satisfies this condition. Again, we can analyze the

results of Proposition 2 graphically.

Figure 3: Expected Returns After Model Turning Points

(a) E[rSLOW,t|µt−1, µt−2]
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(b) E[rFAST,t|µt−1, µt−2]
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Notes: This figure shows contour plots of the conditional expected returns of (a) E[rSLOW,t|µt−1, µt−2], and
(b) E[rFAST,t|µt−1, µt−2], following a (model) turning point (sign(µt−1) 6= sign(µt−2)) over various values of
mean persistence ϕ and noise ratios θ for the parameters −µt−1 = µt−2 = 0.3σr.

Figure 3 plots the conditional expected returns of (a) SLOW and (b) FAST after a turning

point as given in Proposition 2 for various values of persistence and noise, with opposite-sign

expected returns at 0.3-standard-deviation magnitude each, −µt−1 = µt−2 = 0.3σr. After

the turning point, expected returns are negative for SLOW and positive for FAST under all

noise and persistence levels.16 Figure 3(a) shows that the conditions where SLOW performs

well overall correspond with the conditions where SLOW struggles most after turning points:

relatively high persistence and noise. Therefore, the acceleration of overall performance of

SLOW with higher persistence under relatively high noise (as shown in Figure 2) tends

to come at the cost of exacerbating momentum crashes. Figure 3(b) shows that with lower

noise levels or higher persistence levels FAST delivers increasing positive returns after turning

16We plot persistence above 0.5, however, the signs of expected returns in the plot remain the same for
lower persistence levels.
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points.

Opposite signs of expected returns of SLOW and FAST after a turning point imply

that these strategies tend to take opposite positions after turning points. This observation

indicates that the information in the union of SLOW and FAST strategy positions can

be useful in detecting turning points. We further explore these connections in subsequent

sections.

We fully recognize that the model assumptions we have employed do not hold in the real

world. For example, returns are generally not normally distributed and expected returns

need not follow AR(1). Throughout the remainder of the paper, we do not maintain the

distributional assumptions introduced in this section. Instead, we employ the mild standing

assumption that moments in analytical expressions and derivations exist and second moments

are non-zero. In this sense, we characterize our subsequent results as being model free.

2.3. Characterizing Intermediate Speeds and Market Cycles

We define a continuum of intermediate strategies with signal speeds between SLOW and

FAST by

wt(a) := (1− a)wSLOW,t + awFAST,t, (11)

rt+1(a) := wt(a)rt+1 = (1− a)rSLOW,t+1 + a rFAST,t+1, (12)

where the speed parameter a ∈ [0, 1] is a scalar. At a = 0, the speed is slow: wt(0) = wSLOW,t.

Here, if the preceding 12-month return is positive, the strategy is long one unit even when

the most recent month’s return is negative. At a = 1, the speed is fast: wt(1) = wFAST,t.

Here, any change of sign in the most recent month’s return results in a strategy position

change. For a ∈ (0, 1), the speed is intermediate and, in particular, at a = 1
2

we call the

speed “medium” (MED):

wMED,t := wt
(
1
2

)
= 1

2
wSLOW,t + 1

2
wFAST,t, (13)

with rMED,t+1 := wMED,trt+1.

Blending slow and fast momentum portfolios to form intermediate-speed strategies is a

key analytical choice. By doing so, we embed sensitivity to periods of disagreement between

the slow and fast strategies, which potentially signal turning points. For example, when

SLOW indicates a long position (+1) and FAST indicates a short position (−1), then the

intermediate-speed strategy with speed a = 3
4

takes a lower magnitude short position (−1
2

=
1
4
(+1) + 3

4
(−1)). The MED portfolio is out of the market altogether (0 = 1

2
(+1) + 1

2
(−1)).
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In contrast, strategies that go long or short based on the sign of some horizon of trailing

returns rt−k,t do not scale down their positions when signals of longer and shorter horizons

disagree. For example, the sign of the six-month signal rt−6,t could take several months to

reflect a turning point in trend, during which time the strategy is fully long or short.17

Figure 4: Stock Market Cycles as a Function of Momentum
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Notes: This diagram defines the four cycles of an asset’s price trajectory as a function of SLOW and
FAST momentum positions. A month ending at date t is classified as Bull if both the trailing 12-month
return (arithmetic average monthly return), rt−12,t, is nonnegative, and the trailing 1-month return, rt−1,t,
is nonnegative. A month is classified as Correction if rt−12,t ≥ 0 but rt−1,t < 0; as Bear if rt−12,t < 0 and
rt−1,t < 0; and as Rebound if rt−12,t < 0 but rt−1,t ≥ 0. Also, the diagram reports the relative frequency
of monthly aggregate U.S. stock market cycles over the 50-year period from 1969-01 to 2018-12. Market
returns are U.S. excess value-weighted factor returns (Mkt-RF) from the Kenneth French Data Library.

Figure 4 maps the intersection of slow and fast signals to one of four observable market

cycles or states. We use st to denote the state at date t. To capture the notion of a

sustained upward trend, we label a month ending at date t as Bull if both the 12-month

and 1-month trailing returns are nonnegative (rt−12,t ≥ 0 and rt−1,t ≥ 0, on the upper-

right quadrant of the diagram). We label the other three quadrants of the diagram (going

clockwise) of trailing 12-month and 1-month returns as Correction, Bear, and Rebound,

respectively. We will also use the abbreviations Bu, Co, Be, and Re to denote the respective

market states (e.g., st = Re for a Rebound). Admittedly, the labels assigned to these cycles

have a relatively loose meaning. In particular, short-lived market gyrations could lead to

17In Internet Appendix D, we compare the performance of the 6-month TS momentum strategy, MOM6,
with our intermediate-speed strategies and find that across different metrics MOM6 performs similarly to
the SLOW strategy (i.e., MOM12). This result is not surprising because 5 of 6 months (83%) in the 6-month
signal rt−6,t overlap in consecutive months. This overlap is close to that of the 12-month signal rt−12,t (92%).
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brief and unintuitive correction or rebound classifications, which could be addressed by more

sophisticated classification rules. Yet, because our simple cycle definitions are one to one

with the four possible slow/fast strategy position pairs for the subsequent month, these

cycles provide an exact ex-ante specification of the slow and fast momentum strategies, and

by extension, all intermediate speed strategies in (11) and (12).

Over our 50-year evaluation period, Bull months have been the most common with a

relative monthly frequency of 48.3%, reflecting the average positive risk premium offered

by the U.S. stock market. Bear months are relatively uncommon—approximately one-sixth

of the time (16.8%)—whereas Correction and Rebound months amount to the remaining

34.8% of the months. In other words, about once every three months, on average, SLOW

and FAST suggest a different position in the stock market. These phases will be the focus

of much of our analysis.

Market cycles conveniently map to the properties of SLOW and FAST for analysis. For

instance, consider the strategy in (13) that employs the medium-speed signal, which is the

equally-weighted average of the slow and fast strategies. Conditioning on the various market

cycles as of date t, the equally-weighted strategy return at date t+ 1, rMED,t+1 = wMED,trt+1,

has long-run expected value:

E[rMED,t+1] = E[1
2

(wSLOW,t + wFAST,t) rt+1]

= E[1
2

(1 + 1) rt+1|st = Bu]P[st = Bu] + E[1
2

(1− 1) rt+1|st = Co]P[st = Co]

+ E[1
2

(−1− 1) rt+1|st = Be]P[st = Be] + E[1
2

(−1 + 1) rt+1|st = Re]P[st = Re]

= E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be], (14)

where P represents the probability measure. This framework can be extended beyond the

calculation of expected returns. In particular, the nature of market cycles also has an impact

on the Sharpe ratio of a trend strategy (see Section 3.1) and its skewness (see Section 3.3).

Moreover, it opens the intriguing possibility of “speed timing” by strategically adjusting the

speed parameter a across market states, a challenge so far not tackled, to the best of our

knowledge, by any existing paper (see Section 4).

2.4. The Economic Linkages of Market Cycles

We further motivate the relevance of our cycles by evaluating their economic linkages. We

study three groups of macro indicators. The first group includes four indices assembled by

the Federal Reserve Bank of Chicago that cover major components of the U.S. economy—

production, consumption, employment, and sales—and monetary policy shocks estimated
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by Gertler and Karadi (2015). The second group includes five risk-related indicators: (i)

the National Financial Conditions Index (NFCI) by the Chicago Fed; (ii) the Pastor and

Stambaugh (2003) liquidity innovation measure (PS Liquidity); (iii) the Treasury–Eurodollar

(TED) spread; (iv) the liquidity metric for the Treasury bond market (Noise) developed

by Hu, Pan, and Wang (2013); and (v) the high-volatility/low-volatility valuation spread

(Vol Spread) of Pflueger, Siriwardane, and Sunderam (2018). The last group of variables,

which are based on media or survey data, includes: (i) the daily news-based Economic

Policy Uncertainty Index (Policy) by Baker, Bloom, and Davis (2016); (ii) the University of

Michigan Consumer Sentiment Index; (iii) the Purchasing Manager’s Index (PMI) compiled

by the Institute for Supply Management; (iv) the current-quarter recession probabilities

by the Survey of Professional Forecasters (SPF); and (v) the next-quarter corporate profit

expectations also from the SPF. In total, we collected 15 time series of macro indicators.

In Table 1, we map the four market cycles contemporaneously to innovations in the

15 macro indicators. These innovations are the residuals from individual autoregressive

models, whose order is determined by the Bayesian Information Criterion.18 Our evidence

reveals a common theme. During Bull and Bear markets, when SLOW and FAST agree,

we observe significant positive and negative macroeconomic shocks, respectively. During

Corrections and Rebounds, innovations are statistically insignificant. A potential shift or

stall in the macro environment, captured by neither significant positive nor negative average

innovations, tends to coincide with turning points in the cycles of the stock market. Only

monetary policy shocks paint a somewhat different picture, with surprise cuts associated

with Rebound phases and hikes with Correction phases.

Risk and survey measures are also contemporaneously correlated with the four market

cycles. For instance, mispricing in the bond market (Noise) tends to deteriorate during Bear

markets and recover during Rebound phases. Similarly, PMI and Policy appear to stall in

Correction and Rebound phases, the phases during which MED exits to cash. Recession

expectations by the SPF tend to spike during Bear phases and dissipate during Rebound

and Bull phases.

In summary, Correction and Rebound phases are consistent indicators of potential turning

points in the economy and in the broad risk appetite. Accordingly, strategies that vary with

market cycles, such as the intermediate-speed strategies, have the potential to be more

effective than those that do not. In the next section, we analyze which speeds perform

better than others and use the lens of market-cycle information to explain why.

18The only two exceptions to this approach consist of the liquidity innovation metric (PS Liquidity)
constructed by Pastor and Stambaugh (2003) and the monetary policy shocks (MP Shock) estimated by
Gertler and Karadi (2015).
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Table 1: Macro Innovations t-Statistics by Market Cycle

Economy (Surprises)

Market Cycle Production Consumption Employment Sales MP Shock

Bull 1.53 2.25 2.30 2.63 0.41
Correction 1.46 −0.29 1.06 −0.13 1.72
Bear −3.15 −3.24 −4.06 −3.73 0.58
Rebound −1.41 −0.23 −1.30 −0.65 −3.96

Risk (Surprises)

Market Cycle NFCI* PS Liquidity TED* Noise* Vol Spread

Bull 1.72 4.63 1.67 1.53 3.80
Correction −1.21 −1.67 −1.67 −0.52 −1.02
Bear −3.41 −6.22 −3.03 −4.29 −4.19
Rebound 2.32 0.43 2.00 2.15 −0.86

Surveys (Surprises)

Consumer SPF SPF
Market Cycle Policy* Sentiment PMI Recession* Corporate Profits

Bull 2.09 1.64 3.48 2.30 1.80
Correction 0.06 −0.10 −0.77 −1.21 −0.61
Bear −4.04 −3.30 −3.21 −3.00 −2.83
Rebound −0.28 0.09 −2.39 0.84 0.76

Notes: This table reports the t-statistics of the innovations in 15 macro series conditional on four contem-
poraneous states of the U.S. stock market (Bull, Correction, Bear, and Rebound). These innovations are
the residuals from individual autoregressive models, whose order is determined by the Bayesian Information
Criterion. The only two exceptions to this approach consist of the Pastor and Stambaugh (2003) liquidity
innovation metric (PS Liquidity) and the monetary policy shocks (MP Shock) estimated by Gertler and
Karadi (2015). The symbol * indicates that for the selected series the sign is reversed, so that a negative
shock can be interpreted as a negative outcome. A month ending at date t is classified as Bull if both
the trailing 12-month return (arithmetic average monthly return), rt−12,t, is nonnegative, and the trailing
one-month return, rt−1,t, is nonnegative. A month is classified as Correction if rt−12,t ≥ 0 but rt−1,t < 0; as
Bear if rt−12,t < 0 and rt−1,t < 0; and as Rebound if rt−12,t < 0 but rt−1,t ≥ 0. The starting and ending
dates of the macro series vary according to availability from the original sources, and they are listed in Main
Appendix B. The stock-market returns are U.S. excess value-weighted factor returns (Mkt-RF) from the
Kenneth French Data Library.

3. Static Speed Selection

Our empirical analyses focus on U.S. aggregate stock market returns over a recent 50-

year period.19 For most of the paper, we evaluate performance over a recent 50-year period

19Recent studies focus on applications of momentum to aggregate factors. Ehsani and Linnainmaa (2019)
show evidence of TS momentum across equity factors that appears to subsume the CS momentum risk factor.
A companion paper by Arnott et al. (2019) shows that CS factor momentum is a pervasive phenomenon that,
moreover, drives industry momentum. Gupta and Kelly (2019) show that portfolios of TS factor momentum
can add value to a wide array of investment strategies.
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for consistency with later analyses in which we use earlier data to warm up our dynamic

strategies for out-of-sample evaluation. In Internet Appendix E, we report results for U.S.

equities based on a longer evaluation period beginning in 1927, from which we draw similar

inferences as in our main analyses.

Table 2 summarizes estimates of basic unconditional moments for TS momentum strate-

gies of various speeds alongside the long-only market strategy, whose strategy weights equal

to one every month. Results are gross of transaction costs.20 We highlight these results in

three parts: return and risk, market timing, and tail behavior.

Table 2: Performance Summary by Speed

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Market SLOW MED FAST

Return and Risk
Average (%) (anlzd.) 5.91 6.46 6.17 5.88 5.59 5.30
Volatility (%) (anlzd.) 15.64 15.62 12.72 11.60 12.74 15.66
Sharpe Ratio (anlzd.) 0.38 0.41 0.48 0.51 0.44 0.34

Market Timing
Average Position 1.00 0.46 0.39 0.32 0.25 0.18
Market Beta 1.00 0.15 0.05 −0.04 −0.13 −0.23
Alpha (%) (anlzd.) 0.00 5.58 5.85 6.12 6.39 6.66
Alpha t-statistic — 2.54 3.24 3.71 3.57 3.07

Tail Behavior
Skewness −0.55 −0.43 −0.13 0.02 0.03 0.15
Max. Drawdown (%) −54.36 −43.43 −37.96 −34.43 −34.07 −44.53
Average (anlzd.)/|Max. DD| 0.11 0.14 0.16 0.17 0.17 0.12

Notes: This table reports the sample average, volatility, Sharpe ratio, average position, market beta and
alpha, alpha t-statistic, skewness, maximum drawdown, and ratio of average return to absolute maximum
drawdown for monthly returns of the long-only market strategy (Market) and of TS momentum strategies of
various speeds. The slow strategy weight applied to the market return in month t+ 1, wSLOW,t, equals +1 if
the trailing 12-month return (arithmetic average monthly return) is nonnegative, and otherwise equals −1.
The fast strategy weight, wFAST,t, equals +1 if the trailing 1-month return is nonnegative, and otherwise
equals −1. Intermediate-speed strategy weights, wt(a) are formed by mixing slow and fast strategies with
mixing parameter a: wt(a) = (1 − a)wSLOW,t + awFAST,t, for a ∈ [0, 1]. Strategy returns are formed as
rt+1(a) = wt(a)rt+1, where rt+1 is the U.S. excess value-weighted factor return (Mkt-RF) from the Kenneth
French Data Library. The evaluation period is 1969-01 to 2018-12.

Return and risk. First, momentum strategies of every speed exhibit positive average

20We estimate transaction costs to be modest under conservative assumptions. Let the bid–ask spread
on S&P 500 Index futures be 2 basis points (bps), roll costs 0.5 bps (with rolls happening every quarter),
and commissions 0.1 bps; then the ratio of alpha to transaction costs does not surpass 3% for the strategies
reported in Table 2.
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historical returns in our backtest. Although they all report average returns similar in mag-

nitude to the long-only market strategy, intermediate-speed strategies achieve their returns

with lower volatilities, and therefore report the highest average return per unit of risk as

measured by the Sharpe ratio (see Section 3.1).

Market timing. Second, momentum strategies of every speed have positive average posi-

tions in the underlying market (ranging from 0.18 to 0.46 long, on average), yet their market

betas are relatively small in magnitude with negative point estimates for intermediate-to-

fast speeds. Intermediate-speed strategies are approximately market-beta neutral and deliver

alphas having the largest t-statistics (see Section 3.2).

Tail behavior. Third, momentum strategies of every speed exhibit more desirable skew-

ness than the market strategy. Higher positive (or less negative) skewness is a desirable

property for most investors, and skewness of intermediate-to-fast strategies performs best in

this regard. Moreover, intermediate-speed strategies have less severe maximum drawdowns

and record the highest average returns per unit of drawdown risk (see Section 3.3).

These three categories of results emphasize several merits of intermediate-speed momen-

tum strategies. In particular, MED delivers the highest Sharpe ratio (0.51) and it does so

with approximate market beta neutrality (beta of −0.04), delivering the most statistically

significant alpha (t-statistic of 3.71), without exhibiting the negative skewness behavior of

the underlying market nor the severe drawdown behavior of the market and the slow and fast

strategies. In the following three subsections, we identify properties of the stock market’s

return distribution and develop related theory to help explain these findings.

3.1. Return and Risk

3.1.1. Conditional Return Contributions

Table 3 (Panel A) decomposes the unconditional average returns in the first row of Table 2

into their conditional contributions following each market cycle. Specifically, we employ the

following decomposition of returns using zero-one indicators of the market cycle st at date t:

rt+1 = rt+11{st=Bu} + rt+11{st=Be} + rt+11{st=Co} + rt+11{st=Re}. (15)

For example, the conditional contribution to speed-a TS momentum strategy after Bull

cycles is the sample estimate of E[rt+1(a)1{st=Bu}]. For the market excess return, which

has unconditional expectation 5.91%, its conditional contribution after Bull cycles is 4.59%,

which is the product of its conditional expected value after Bull cycles, 9.5%, and the relative

frequency of Bull cycles, 0.483 (cf. Figure 1). The first row of Panel A repeats the uncon-
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ditional values reported in Table 2 for ease of reference. The middle four values in each

column (and the last two values in each column) sum to the value in the first row (subject

to rounding).

Table 3: Market-Cycle Decomposition of Returns by Speed

Panel A: Average Returns

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Average (%) (anlzd.) Market SLOW MED FAST

Unconditional 5.91 6.46 6.17 5.88 5.59 5.30

Cycle-Conditional Decomposition
Bull 4.59 4.59 4.59 4.59 4.59 4.59
Correction 1.59 1.59 0.79 0.00 −0.79 −1.59
Bear −1.29 1.29 1.29 1.29 1.29 1.29
Rebound 1.01 −1.01 −0.51 0.00 0.51 1.01

Bull + Bear 3.31 5.88 5.88 5.88 5.88 5.88
Correction + Rebound 2.60 0.58 0.29 0.00 −0.29 −0.58

Panel B: Variance of Returns

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Variance (%) (anlzd.) Market SLOW MED FAST

Unconditional 2.44 2.44 1.61 1.34 1.62 2.45

Cycle-Conditional Decomposition
Bull 0.63 0.63 0.63 0.63 0.63 0.63
Correction 0.77 0.77 0.19 0.00 0.20 0.79
Bear 0.73 0.71 0.71 0.71 0.71 0.71
Rebound 0.31 0.32 0.08 0.00 0.08 0.31

Bull + Bear 1.36 1.34 1.34 1.34 1.34 1.35
Correction + Rebound 1.09 1.10 0.27 0.00 0.28 1.10

Notes: This table reports the unconditional sample average (Panel A) and sample variance (Panel B) of
monthly returns of the long-only market strategy and of TS momentum strategies of various speeds and
their contribution in months immediately following various market states. Contributions in each column
sum to their corresponding unconditional values in the first row of each panel (subject to rounding) either
across the four individual states in the middle rows or across the two state pairs in the last two rows. The
long-only market strategy (Market) and TS momentum strategies of various speeds are the same as those
described in Table 2. Market states, st, are defined as follows. Bull: wSLOW,t = wFAST,t = +1; Correction:
wSLOW,t = +1, wFAST,t = −1; Bear: wSLOW,t = wFAST,t = −1; and Rebound: wSLOW,t = −1, wFAST,t = +1.
The evaluation period is 1969-01 to 2018-12.

First, consider the decomposition of average returns to the slow strategy as compared

with the long-only market strategy. After Bulls and Corrections, SLOW is long one unit,
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such as the market strategy, and so gets the same contribution as the market after these

phases, namely, 4.59% and 1.59%, respectively. After Bears and Rebounds, SLOW shorts

the market and flips the sign of the market contribution from −1.29% to 1.29% and from

1.01% to −1.01% after Bears and Rebounds, respectively.

Second, consider the average return contributions across different speeds. TS momentum

strategies of all speeds get the same contribution after Bull and Bear cycles because each is

long after Bulls and short after Bears. These states account for the bulk of the average returns

to all strategies. Contributions after Corrections and Rebounds explain the differences in

average returns by speed. SLOW’s loss after Rebounds is similar in magnitude to FAST’s loss

after Corrections. The net contribution to SLOW after Corrections and Rebounds is 0.58%.

In contrast, FAST flips the sign relative to SLOW after Correction and Rebound cycles,

yielding a net contribution of −0.58%. MED is simply out of the market after Corrections

and Rebounds. These facts explain why the unconditional average returns are close to each

other and to that of the long-only market strategy.

Table 3 (Panel B) decomposes the unconditional variance of returns (squares of volatilities

reported in second row of Table 2) into their cycle-conditional contributions following each

observed market cycle based on the same cycle decomposition of returns as in (15). The

cycle-conditional variance contributions are computed as the covariances of each of the terms

on the right-hand side of (15) with the overall return. For example, the conditional variance

contribution to speed-a TS momentum strategy after Bull cycles is the sample estimate of

Cov[rt+1(a)1{Bu}, rt+1(a)]. The middle four values in each column (and the last two values

in each column) sum to the value in the first row (subject to rounding).

The majority of return variance for all speeds of TS momentum strategies and for the

long-only market strategy are generated after Bull and Bear markets. However, intermediate-

speed strategies scale down their market exposure relative to SLOW and FAST after Cor-

rections and Rebounds and, therefore, experience lower exposure to variance risk emanating

from these states. In particular, after these periods of disagreement, MED exits the market

altogether and avoids any exposure to the variance risk of these states. These facts explain

why the unconditional return variances (and volatilities) are lower for intermediate-speed

strategies compared to SLOW and FAST and compared to the long-only market strategy.

3.1.2. Mapping SLOW/FAST Disagreement to Sharpe Ratios

When one blends two strategies that are relatively uncorrelated, such as SLOW and

FAST, it is not that surprising to see the variance decrease and the Sharpe ratio increase.

In this subsection, however, we provide an alternative characterization of the Sharpe ratio

in terms of a disagreement multiplier, which isolates the volatility contribution from states
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of disagreement between SLOW and FAST after Corrections and Rebounds. This multiplier

is also useful for understanding the skewness of a blend, a topic we discuss in Section 3.3.

The role of such disagreement in determining Sharpe ratios manifests analytically as a

disagreement multiplier, D(a), which appears in (19) of Proposition 3. D(a) captures the

ratio of the volatility of the unconditional market return to the volatility of the momentum

strategy, in terms of volatility contributions from Bull or Bear states and from Correction

or Rebound states, respectively.21

Proposition 3 (Sharpe ratio decomposition). The Sharpe ratio of rt+1(a) can be expressed

in terms of the Sharpe ratios of rSLOW,t+1 and rFAST,t+1, respectively, and the market cycles,

as follows:

Sharpe[rt+1(a)] = (1− a) Sharpe[rSLOW,t+1]D(a,E[rSLOW,t+1])

+ aSharpe[rFAST,t+1]D(a,E[rFAST,t+1]), (16)

where

D(a, µ) :=

√
E[r2t+1]− µ2

E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t+1|Co
Re]P[Co

Re]− (E[rt+1(a)])2
. (17)

Approximating squared average strategy returns by (E[rt+1(a)])2 ≈ 0 for a ∈ [0, 1], we have

Sharpe[rt+1(a)] ≈ ((1− a) Sharpe[rSLOW,t+1] + aSharpe[rFAST,t+1])D(a), (18)

where the term D(a), multiplying the weighted average of Sharpe ratios in (18), is

D(a) := D(a, 0) =

√
E[r2t+1]

E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t+1|Co
Re]P[Co

Re]
. (19)

D(a) is greater than or equal to one and is maximized at a = 1
2

on a ∈ [0, 1]:

D
(
1
2

)
≥ D(a) ≥ 1, a ∈ [0, 1]. (20)

Moreover, a = 1
2

is the unique maximizer with D(1
2
) > 1 if the relative frequency of such

states is not zero so that E[r2t+1|Co
Re]P[Co

Re] > 0.

21As before, let rt+1 denote the return on an underlying security and recall that the speed-a strategy
return, rt+1(a), is just the weighted average of SLOW and FAST with weight a applied to FAST. Also, let
{Bu
Be} denote the union of events Bull or Bear, and {Co

Re} the union of events Correction or Rebound. We
apply similar notation throughout the paper for the union of any of the four market states.
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Proof. See Main Appendix A.

Proposition 3 indicates that the risk-adjusted performance of intermediate-speed momen-

tum strategies (0 < a < 1) is greater than the a-weighted average risk-adjusted performances

of the slow and fast momentum strategies, taken separately, as long as squared expected re-

turns are relatively small and can be approximated by zero.22 In particular, (18) states that

the Sharpe ratio of a strategy with speed a is approximated by the product of two compo-

nents: (A) the a-weighted blend of the separate Sharpe ratios of SLOW and FAST, and (B)

the disagreement multiplier, D(a). In general, the speed a∗ of the strategy that maximizes

the Sharpe ratio depends on both of these components.

Proposition 3 states that component (B) is maximized at a = 1
2
. Intermediate-speed

strategies reduce volatility originating from Correction and Rebound states. Such volatil-

ity exposure is largely captured by the conditional average squared returns following these

states, E[r2t+1|Co
Re], times the relative frequency of these states, P[Co

Re]. Hence, E[r2t+1|Co
Re]P[Co

Re]

represents the frequency-weighted contribution of these states to the unconditional volatility

of the strategy. Intermediate-speed strategies with parameter a in the vicinity of 1
2

tend to

scale down positions following such periods, boosting the overall risk-adjusted performance

by reducing exposure to risk. The factor (2a − 1)2 multiplying E[r2t+1|Co
Re]P[Co

Re] captures

this scaling-down, and this reduction in the denominator boosts the disagreement multiplier

D(a) above one. At a = 1
2
, volatility contributions from Correction and Rebound states are

completely eliminated ((2(1
2
)− 1)2 = 0).

If the Sharpe ratios of SLOW and FAST are sufficiently different from each other, then

component (A) can play a dominant role. For example, suppose the Sharpe ratio of SLOW

(a = 0) is much larger than that of FAST. Although component (B) is maximized at a = 1
2
,

it might not be large enough to overcome component (A)’s reduced contribution at a = 1
2

to

the product in (18). In this example, a∗ could be 0.

However, as a corollary, if the Sharpe ratios of SLOW and FAST are sufficiently close to

each other, then component (A) is relatively insensitive to a, and so a∗ depends primarily

on the disagreement multiplier. In this case, a∗ ≈ 1
2
. This corollary helps explain MED’s

relatively high Sharpe ratio in Table 2 because average returns are roughly the same mag-

nitude across all speeds. Moreover, we can apply this corollary to the situation in which

one does not have conviction about which of SLOW and FAST will have the higher Sharpe

ratio ex ante. Compared to a randomized experiment of choosing to invest in either SLOW

or FAST, this corollary informs us that MED has a higher ex-ante Sharpe ratio than the

expected Sharpe ratio of the experiment.

22For example, if the average return is 5%, then its square is only 0.25%. Note that the approximation is
exact at the endpoints of the interval [0, 1].
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Furthermore, because Proposition 3 is a model-free result, it extends beyond our running

empirical example of the U.S. stock market and beyond our stylized analytical model of

Section 2.2 to momentum strategies of various speeds applied in any market. We examine

the performance of international equity markets in Section 5 and of equity factors in Internet

Appendix F. Because equity factors take offsetting long and short positions in equity sub-

portfolios, the economic linkages to equity returns discussed in Section 2.4 may not apply

to factor returns. However, the general statistical properties outlined in Proposition 3 still

apply to equity factors: under mild assumptions, the Sharpe ratio of MED is higher than the

average of the Sharpe ratios of SLOW and FAST. In addition, for each of the equity factors

in Internet Appendix F, there is an intermediate-speed strategy that has both Sharpe ratio

and alpha t-statistic higher than those of both SLOW and FAST.

3.2. Market Timing

3.2.1. The Determinants of Market Beta and Alpha

Given the preponderance of Bull cycles—around half of all months—as reported in Fig-

ure 4, it should not come as a surprise that trend following of the U.S. stock market implies

a positive static tilt. Indeed, as detailed in Table 2, the average position of the momentum

strategies ranged from 46% to 18% from slow to fast speeds. As also detailed in Table 2, how-

ever, the betas of the momentum strategy returns are relatively low in magnitude and range

from 0.15 to −0.23 from slow to fast speeds, with negative point estimates for intermediate-

to-fast speeds—something we might not expect given their positive tilts.

To understand this evidence, we first disentangle the timing bets and static bets in

expected returns with a widely-used decomposition:

rt+1(a) = wt(a)rt+1

= (wt(a)− E[wt(a)])︸ ︷︷ ︸
dynamic

rt+1 + E[wt(a)]︸ ︷︷ ︸
static

rt+1, (21)

where the first equality above matches the first equality in (12). Taking expectations, we

have

E[rt+1(a)] = Cov[wt(a), rt+1]︸ ︷︷ ︸
market timing

+ E[wt(a)]︸ ︷︷ ︸
static
dollar

exposure

E[rt+1], (22)

because (wt(a)− E[wt(a)]) is mean zero. The covariance term is also known as the market-
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timing component, and it represents the share of expected returns generated by the dynamic

bets of the signal as reflected by the strategy weights wt(a). In contrast, the average strategy

weight summarizes the static dollar exposure of the strategy.

Huang et al. (2019) argue that static average tilts are the primary source of TS momentum

performance. To support their argument, they construct two portfolios: (1) a TS momentum

portfolio that goes long or short based on the sign of trailing 12-month returns, similar to our

SLOW, and (2) a portfolio that goes long or short based on the sign of the entire history of

returns. This second strategy is essentially a buy-and-hold market strategy when inception-

to-date market returns are positive. They show that these two strategies perform similarly

with respect to average and risk-adjusted returns, thereby calling into question the role of

timing in the 12-month signal.

However, if their argument were correct, we would have a beta puzzle. To see the problem,

consider the first two columns of Table 2. The “Market” column reflects a buy-and-hold

portfolio and the “SLOW” column reflects a 12-month TS momentum portfolio. Indeed, both

portfolios exhibit similar performance in average returns (approximately 6%) and Sharpe

ratios (approximately 0.40). Yet, if SLOW is inheriting its performance from its static tilt,

then why is its market beta so low—only 0.15? Small betas imply meaningful alphas, which

map to the alphas estimated in Table 2. Moreover, small betas imply low correlations, so

we could blend SLOW with the market buy-and-hold strategy to achieve a better Sharpe

ratio—a contradiction to their argument.

What explains this apparent beta puzzle? The market-timing component must be adding

negative beta with respect to the underlying market, which offsets the beta of the static

allocation. As reported in Panel A of Table G.1 in Internet Appendix G, the timing share

of the portfolios displays insignificant or only marginally significant excess returns, a result

that echoes the results of Huang et al. (2019). Yet, as reported in Panel B of the same table,

these portfolios recorded negative betas with respect to the underlying market. To better

understand this mechanism, we next disentangle the timing and static components in the

market covariance, beta, and alpha:

Proposition 4 (Covariance with underlying market). The (contemporaneous) covariance be-

tween the speed strategy returns and the long-only market strategy returns can be decomposed
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as follows:23

Cov[rt+1(a), rt+1]

= E[wt(a)]Var[rt+1] + Cov[wt(a), rt+1]E[rt+1] + Cov[wt(a), (rt+1 − E[rt+1)
2], (23)

for a ∈ [0, 1]. The market beta and alpha, respectively, can be decomposed as follows:

Beta[rt+1(a)]

= E[wt(a)]︸ ︷︷ ︸
static

component

+
Cov[wt(a), rt+1]

Var[rt+1]
E[rt+1]︸ ︷︷ ︸

market timing
component

+
Cov[wt(a), (rt+1 − E[rt+1])

2]

Var[rt+1]︸ ︷︷ ︸
volatility timing

component

, (24)

Alpha[rt+1(a)]

= Cov[wt(a), rt+1]

(
1− (E[rt+1])

2

Var[rt+1]

)
− Cov[wt(a), (rt+1 − E[rt+1])

2]

Var[rt+1]
E[rt+1], (25)

for a ∈ [0, 1]. Approximating squared average market returns by (E[rt+1])
2 ≈ 0, we have

Alpha[rt+1(a)] ≈ Cov[wt(a), rt+1]−
Cov[wt(a), (rt+1 − E[rt+1])

2]

Var[rt+1]
E[rt+1]. (26)

Proof. See Main Appendix A.

Equation (24) of Proposition 4 indicates that the market beta of any of our momentum

strategies can be decomposed into a static component and a market-timing component,

similar to the decomposition of the expected return in (22); however, an important additional

volatility-timing component arises, which reflects the predictability of strategy weights for

subsequent return volatility.24 Therefore, if the momentum weights significantly covary with

23Our decompositions have similarities in form to the relationships established between unconditional beta
(alpha) and expected conditional beta (alpha) in the conditional CAPM literature. Jagannathan and Wang
(1996) were the first to establish the exact relation between unconditional beta and expected conditional
beta (equations A10–A14 in the appendix of their paper). This relationship is also developed and examined
by Lewellen and Nagel (2006) and Boguth et al. (2011). Conditional beta and expected conditional beta
in these studies can be mapped to our strategy weight and static beta component, respectively. However,
the other components in these studies include covariances between conditional beta and each of conditional
market returns, conditional squared market returns, and conditional market variance, given a conditioning
information set. Boguth et al. (2011) organize these terms into two groups and use the labels “market
timing” and “volatility timing” (equations (5) and (6)). Because our expressions use market excess returns
directly rather than conditional expected returns given a conditioning information set, there is no direct
counterpart to the market and volatility timing components in our decompositions.

24 Previous studies focus almost exclusively on market timing. An exception is Boguth et al. (2011), who
argue that volatility timing can be an important component, if not the dominant driver of unconditional
alpha. Our results are consistent and we show that volatility timing comprises approximately one- to two-
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the subsequent squared return deviations from their mean, then the beta of the momentum

portfolio is not well approximated by the beta of the average momentum position. Thus,

even if the market-timing component is relatively small compared to a larger positive static

component, the volatility-timing component could be relatively large, but of opposite sign,

and enough to offset the static component of the market beta. As indicated in Table 4, this

is indeed the case for the U.S. stock market. Such TS momentum predictability is not taken

into account by Huang et al. (2019).

Table 4: Beta and Alpha Decompositions by Speed

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Market Beta and Alpha SLOW MED FAST

Beta 0.15 0.05 −0.04 −0.13 −0.23
Alpha (%) (anlzd.) 5.58 5.85 6.12 6.39 6.66
Alpha t-stat. 2.54 3.24 3.71 3.57 3.07

Beta Components

Static 0.457 0.387 0.317 0.247 0.177
Market Timing 0.008 0.008 0.008 0.008 0.009
Volatility Timing −0.315 −0.339 −0.364 −0.389 −0.414

Alpha Components (%) (anlzd.)

Market Timing 3.72 3.84 3.96 4.09 4.21
Volatility Timing 1.86 2.00 2.15 2.30 2.44

Notes: This table reports the sample market beta, alpha, and alpha t-statistic of monthly returns of momen-
tum strategies of various speeds repeated from Table 2. The table also reports the (additive) decomposition
of beta into static, market-timing, and volatility-timing components according to estimates of the terms in
(24) and the (additive) decomposition of alpha into market timing and volatility timing according to esti-
mates of the terms in (25). TS momentum strategies of various speeds are the same as those described in
Table 2. The evaluation period is 1969-01 to 2018-12.

Table 4 repeats the market beta, alpha, and alpha t-statistic estimates reported in Table 2

for ease of reference and also shows the market beta breakdown into the three (additive)

components corresponding to the terms in (24). The static beta component equals the

average position as reported in Table 2. The market-timing component of beta is small

and near zero for all speeds. The volatility-timing component of beta is roughly as large in

magnitude as the static component, but of opposite sign. Together, these terms sum to the

market betas in the top row.

Table 4 also reports the market alpha breakdown into its two (additive) components

corresponding to the terms in (25). The market-timing component in the alpha approxima-

thirds of the alpha of our TS momentum strategies.
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tion of (26) is identical to the market-timing component in the widely-used expected return

decomposition of (22). The alpha decomposition reveals, however, that volatility timing,

in addition to market timing, can be a driver of alpha. Indeed, Table 4 reports that the

volatility-timing component composes a large portion—over 33%—of each strategy’s overall

alpha estimated over the evaluation period. Volatility timing accounts for over 50% of alpha

over the last 15 years (see Internet Appendix H).

Why do we find near-zero market timing in beta yet a large relative market-timing com-

ponent in alpha? The answer is fairly straightforward. When beta is zero, alpha is just the

expected strategy excess return, which is composed of market timing and static components

only, as in (22). However, the static part of beta (which can be non-zero even when beta is

zero) perfectly offsets any static component in alpha coming from expected strategy returns.

Therefore, there is no static component in the decomposition of alpha in (25). If there were

no volatility timing, then we would expect 100% of alpha to come from market timing—via

expected strategy returns or market timing in beta. The reason that alpha market timing is

only about 65% of alpha rather than 100% is that volatility timing explains the remaining

portion.

To summarize, the average position of a TS momentum portfolio does not need to reflect

the beta exposure of the strategy. If weights predict volatility, then the market timing

and static dollar exposure terms offer an incomplete picture of the alpha generated by TS

momentum.

3.2.2. Relation to Volatility-Managed Portfolios

A potential overlap between TS momentum strategies and the volatility-managed (VOM)

portfolios of Moreira and Muir (2017) should not be surprising. VOM portfolios increase

exposure to an underlying portfolio following low-volatility states and decrease exposure

following high-volatility states. Moreira and Muir document that managing the leverage of

a strategy in this manner can increase Sharpe ratios and deliver alpha with respect to the

underlying portfolio. The contemporaneous correlation between stock market returns and

their monthly volatility has been about −28% over our 50-year evaluation period.25 This

negative correlation implies that trailing volatility tends to be lower (higher) when trailing

returns are positive (negative). Therefore, we expect some positive comovement between the

weights of a TS momentum strategy and a VOM strategy applied to a common underlying

portfolio.

25This negative association is often referred to as the leverage effect in reference to an economic explanation
of the phenomenon offered by Black (1976) and Christie (1982). According to this explanation, negative
equity returns lead to higher firm leverage, which in turn should translate into higher equity volatility as
firms become riskier. See also Harvey et al. (2018).
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Is TS momentum alpha primarily a repackaging of volatility management alpha? Per-

taining to the U.S. stock market, Moreira and Muir highlight two key ingredients in VOM

portfolios: (1) trailing volatility tends to be uncorrelated to subsequent returns; and (2),

volatility tends to be persistent at short horizons. These ingredients entail little-to-no mar-

ket timing and mostly volatility timing in VOM portfolio alpha, by construction. Moreira

and Muir’s theoretical results predict positive VOM alpha when there is no correlation be-

tween volatility and expected returns, highlighting that the positive empirical VOM alpha

they report can be explained solely by volatility timing. In contrast, TS momentum alpha

can have significant market timing in addition to volatility timing, as illustrated in Table 4.

Therefore, TS momentum strategies appear to extract a distinct source of alpha relative to

VOM strategies. To get a broader answer, one can apply our alpha decomposition to any

collection of TS strategies on a common underlying portfolio—including more complex ver-

sions of momentum and VOM strategies—to measure the degree of overlap in their market

timing and volatility timing. See also Main Appendix C, in which we compare MED with

the TS momentum strategy of Moskowitz, Ooi, and Pedersen (2012), which explicitly uses

volatility targeting.

3.3. Tail behavior

3.3.1. Market-cycle decomposition

Table 5 reports various percentiles of monthly market returns in months following each

of the four market cycles. Corrections introduce extreme outcomes and volatility despite

most outcomes being positive (median monthly return of 1.07%).26 Yet, extreme outcomes

tend to be more severe on the downside than the upside. The fast strategy tends to flip

deeper Correction losses into gains by going short after Corrections, which can help explain

its slightly positive point estimate for skewness in Table 2. However, FAST also has full

exposure to volatility from both Correction and Rebound states, in which the spread of

returns is larger on both the positive and negative sides relative to Bull states. Intermediate-

speed strategies reduce exposure to both volatility and extreme events associated with these

states. In particular, MED avoided this exposure altogether with a zero position in months

after these states, which can help explain its approximately zero point estimate for skewness

in Table 2.

Downside risk exposure after each market cycle can help explain the pattern of maximum

26Five of the 10 worst months in our 50-year evaluation period were after Correction phases: −23.24%
(1987-10); −16.08% (1998-08); −12.90% (1980-03); −11.91% (1978-10); and −10.72% (2000-11). Four of the
10 best months in the evaluation period were after Correction phases: 12.47% (1987-01); 12.16% (1976-01);
11.35% (2011-10); and 10.84% (1991-12).
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Table 5: Cycle-Conditional Market Return Distributions

Return Percentiles (%) Bull Correction Bear Rebound
MIN −9.55 −23.24 −17.23 −10.35
P01 −7.85 −14.62 −12.79 −10.16
P05 −4.64 −7.14 −10.10 −8.41
P10 −3.37 −5.64 −8.06 −5.51
P25 −1.51 −2.08 −4.83 −2.44
P50 1.05 1.07 −0.89 1.15
P75 3.07 3.82 3.98 4.59
P90 4.68 5.84 6.82 7.24
P95 6.13 7.15 7.99 7.98
P99 7.21 11.79 13.68 10.61
MAX 9.59 12.47 16.10 11.30

Notes: This table reports various percentiles of monthly market excess returns in months immediately
following each of four market states—Bull, Correction, Bear, and Rebound—defined in terms of slow and
fast momentum strategy positions as in Table 3. PX is the X-th percentile. For example, P10 is the 10th
percentile of monthly returns. The evaluation period is 1969-01 to 2018-12.

drawdowns across strategies reported in Table 2. After Bear states, the magnitudes of lower

percentile (negative) returns are higher in most cases than the magnitudes of symmetrically

higher percentile (positive) returns. Momentum strategies of all speeds are short after Bear

markets, turning this downside into upside. Consistent with this evidence, Table 2 reports

lower maximum drawdowns than the long-only market strategy for all speeds. Intermediate

speeds further reduce exposure to extreme downside events by scaling down after Corrections

and Rebounds. Accordingly, intermediate speeds report lower maximum drawdowns and

higher average returns per unit of absolute maximum drawdown in Table 2.

3.3.2. Skewness

We formalize the relationship between skewness of MED relative to the skewness of

SLOW and FAST in terms of MED’s Sharpe ratio and the disagreement multiplier, D(a),

introduced in Section 3.1.2. The connection between the Sharpe ratio and the skewness of a

random variable is illuminated in Lemma 5, which we apply to obtain Proposition 6.

Lemma 5. For any Y such that its first three moments are defined and SD[Y ] > 0, then

Skew[Y ] = E[Y 3]
(SD[Y ])3

− Sharpe[Y ] (3 + (Sharpe[Y ])2), where Sharpe[Y ] = E[Y ]
SD[Y ]

.

Proof. See Main Appendix A.

Proposition 6 (Skewness decomposition). The skewness of rt+1(a) can be expressed in terms

of the skewness of rSLOW,t+1 and rFAST,t+1, respectively, and a disagreement multiplier. An
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exact expression as well as an approximation for all a ∈ [0, 1] based on (E[rt+1(a)])2 ≈ 0 for

a ∈ [0, 1] are given in (A48) and (A49), respectively, in Main Appendix A. In the special

case of a = 1
2
, we have

Skew[rt+1(
1
2
)] ≈ 1

2
(Skew[rSLOW,t+1] + Skew[rFAST,t+1])

(
D(1

2
)
)3

+ 3 Sharpe[rt+1(
1
2
)]

((
D(1

2
)
)2 [

1 +

(
Sharpe[rFAST,t+1]− Sharpe[rSLOW,t+1]

2

)2
]
− 1

)
,

(27)

where D(1
2
) is as defined in (19) for a = 1

2
.

Proof. See Main Appendix A.

Proposition 6 indicates that skewness of MED is scaled up relative to the average skewness

of SLOW and FAST—since
(
D(1

2
)
)3
> 1 per Proposition 3—and shifted to the right when

MED has a positive Sharpe ratio—since
(
D(1

2
)
)2

> 1 and because the term in the outer

parentheses is always positive. The multiplier D(1
2
) is the same disagreement multiplier

which appears in Proposition 3, D(a), evaluated at a = 1
2
. As reported in Table 2, the

slow strategy has negative skewness of −0.43, but the fast strategy has positive skewness of

0.15. Their average skewness is negative at −0.14. The disagreement multiplier D(1
2
) = 1.34

amplifies the first term in (27) by a factor of
(
D(1

2
)
)3

= 2.42, bringing its contribution to

−0.34. The second term in (27) shifts this value to the right by 0.36, yielding the slight

positive skewness of 0.02 for MED as reported in Table 2.

As before, because Proposition 6 is a model-free result, it extends beyond our running

empirical example and beyond our stylized analytical model of Section 2.2 to momentum

strategies of various speeds applied in any market. Moreover, as a corollary to this result, if

SLOW and FAST both have nonnegative skewness and Sharpe ratios when applied in some

market, then the skewness of MED is going to be positive and higher than the maximum

skewness of both SLOW and FAST.

4. Dynamic Speed Selection

The differences in the conditional return distributions following Correction and Rebound

cycles (as reported in Table 5 and discussed in Section 3.3.1) raise the question of whether

a dynamic momentum strategy could offer improved performance over a static strategy. For

example, how might a strategy perform if its weights following Corrections and Rebounds
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were individually specified instead of implied by the weighted average of slow and fast strate-

gies? Would strategy weights of 0 and 1
2

following Corrections and Rebounds perform better

than the zero weights implied by the MED strategy, or the −1
2

and 1
2

weights of the a = 3
4

strategy? We address questions of this nature in this section.

Instead of using a static speed parameter a, we let it vary dynamically with the four

market cycles. The dynamic speed as(t) at date t is a function of the observable market state

s(t) at that date, which is one of {Bu, Co, Be, Re}. For example, if in a Correction cycle at date

t (s(t) = Co), then aCo is the parameter which will govern the blending between slow and

fast strategy weights in the subsequent month. If the cycle remains in Correction at date

t + 1, then we apply the same aCo for the next month. If the cycle shifts to Bear at date

t+ 2, then we apply aBe for the next month, and so on.

The corresponding dynamic strategy return is

rt+1(as(t)) = wt(as(t)) rt+1 = [(1− as(t))wSLOW,t + as(t)wFAST,t]rt+1. (28)

Note that since wSLOW,t = wFAST,t with magnitude one after Bull or Bear cycles, the dynamic

weight in (28) is invariant to the values of aBu and aBe. That is, wt(aBu) = 1 after Bull

for all aBu and wt(aBe) = −1 after Bear for all aBe. Nevertheless, the dynamic weight is

sensitive to the values of aCo and aRe following Correction and Rebound cycles, respectively.

In Proposition 7, we establish the values of these state-conditional speed parameters that

maximize the steady-state Sharpe ratio of the dynamic returns.

Proposition 7 (Sharpe ratio maximizing dynamic speed rule). Consider the problem of

choosing the state-conditional speeds as(t) which will be applied following every occurrence of

state s(t) in order to achieve the highest steady-state Sharpe ratio:

max
as(t):s(t)∈{Co,Re}

Sharpe[rt+1(as(t))]. (29)

If E[rt+1|Bu]P[Bu] > E[rt+1|Be]P[Be], then

aCo =
1

2

(
1−

E[r2t+1|Bu
Be]P [Bu

Be]

E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be]

E[rt+1|Co]

E[r2t+1|Co]

)
, (30)

aRe =
1

2

(
1 +

E[r2t+1|Bu
Be]P [Bu

Be]

E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be]

E[rt+1|Re]
E[r2t+1|Re]

)
, (31)

is the unique state-conditional speed pair that maximizes (29).

Proof. See Main Appendix A.
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Proposition 7 specifies the dynamic speed selections that maximize the steady-state

Sharpe ratio in terms of cycle-conditional first- and second-population moments of market

returns. The condition E[rt+1|Bu]P[Bu] > E[rt+1|Be]P[Be] ensures that the weights are max-

imizers and not minimizers. This condition is typically satisfied because expected returns

are typically positive following Bull cycles and negative following Bear cycles.

Because population values of the first and second moments in (30) and (31) are not

observable, we use historical estimates of these moments to approximate their values. We use

the label “DYN” to denote the investable strategy that employs state-dependent speeds based

on estimated versions of (30) and (31), using only data prior to strategy implementation

(i.e., no look-ahead bias). Specifically, DYN weights are defined as follows: wDYN,t :=

wt(âs(t)) = (1− âs(t))wSLOW,t + âs(t)wFAST,t, where s(t) ∈ {Bu, Co, Be, Re}; âBu = âBe = 1
2
; and

âCo and âRe are estimated using sample averages Ê[·] and P̂[·], which denote estimates of the

average and frequency of their given argument, respectively, based on data prior to strategy

implementation.27 For example, Ê[r2t+1|Bu
Be] is the historical sample average of squared returns

in months after Bull or Bear states within the historical estimation window, and P̂ [Bu
Be] is

the frequency of Bull or Bear states within that historical sample. If these cycle-conditional

return moments are relatively stable over time, then DYN may offer improved performance

out of sample.

4.1. Performance of Dynamic Strategy

Table 6 reports the out-of-sample performance of DYN over various evaluation windows

in our 50-year evaluation period—from 50 years ago forward in 5 year increments to the

most recent 15 years. State-dependent speeds âCo and âRe of DYN are fixed over each

evaluation window using data from the corresponding fixed estimation window from 1926-07

to the month before the evaluation start month.28 We define the efficiency of the DYN

strategy over each evaluation window as the ratio of its Sharpe ratio to that of the highest

performing state-conditional speed strategy ex post, which we label the “OPT” strategy.

OPT uses fixed speeds a∗Co and a∗Re over each evaluation window that give the highest in-

sample Sharpe ratio rather than speeds estimated from trailing data. OPT’s Sharpe ratios

vary over different evaluation windows from 0.570 to 0.721, indicating that different periods

expose the strategies to different performance opportunities. We can measure the performance

of any state-conditional-speed strategy relative to the ceiling set by OPT, including DYN and

27If either of the estimates âCo or âRe fall outside the unit interval [0, 1], then we set its value to the
nearest endpoint, 0 or 1.

28Results are similar if we update speed estimates âCo and âRe at end of each month t − 1 during the
evaluation period using data from expanding rather than fixed estimation windows from 1926-07 to month
t− 1 to form strategy weights for each month t.
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Table 6: DYN Strategy Performance Over a 50-Year Period

DYN Strategy Evaluation
Estimation Window Evaluation Window Sharpe Ratio (anlzd.)

From To Length From To Length Efficiency
(yr-mo) (yr-mo) (yrs) (yr-mo) (yr-mo) (yrs) DYN (âCo, âRe) OPT DYN/OPT

1926-07 1968-12 42.5 1969-01 2018-12 50.0 0.524 (0.00, 0.58) 0.570 0.920
1926-07 1973-12 47.5 1974-01 2018-12 45.0 0.547 (0.07, 0.59) 0.572 0.956
1926-07 1978-12 52.5 1979-01 2018-12 40.0 0.611 (0.08, 0.65) 0.626 0.977
1926-07 1983-12 57.5 1984-01 2018-12 35.0 0.614 (0.22, 0.67) 0.623 0.985
1926-07 1988-12 62.5 1989-01 2018-12 30.0 0.688 (0.26, 0.69) 0.721 0.954
1926-07 1993-12 67.5 1994-01 2018-12 25.0 0.675 (0.11, 0.71) 0.684 0.988
1926-07 1998-12 72.5 1999-01 2018-12 20.0 0.564 (0.17, 0.69) 0.579 0.975
1926-07 2003-12 77.5 2004-01 2018-12 15.0 0.611 (0.16, 0.69) 0.621 0.984

Notes: This table reports the DYN momentum strategy’s Sharpe ratio and its efficiency for various evalu-
ation windows within the 50-year evaluation period. DYN is the dynamic (state-dependent) speeds strategy
whose weights, wt(as(t)) = (1 − as(t))wSLOW,t + as(t)wFAST,t, are based on point estimates of the mean-

variance optimal state-dependent speeds, as(t), using âBu = âBe = 1
2 and sample versions of (30) and (31)

for âCo and âRe, respectively, based on data in the estimation window; wSLOW,t, equals +1 if the trail-
ing 12-month return (arithmetic average monthly return) is nonnegative and otherwise equals −1; wFAST,t,
equals +1 if the trailing 1-month return is nonnegative and otherwise equals −1; and the four observable
market states at date t are defined as: Bu: wSLOW,t = wFAST,t = +1; Be: wSLOW,t = wFAST,t = −1; Co:
wSLOW,t = +1, wFAST,t = −1; and Re: wSLOW,t = −1, wFAST,t = +1. If either of the estimates âCo or âRe

fall outside the unit interval [0, 1], then we set its value to the nearest endpoint, 0 or 1. Strategy returns
are formed as rt+1(a) = wt(a)rt+1, where rt+1 is the U.S. excess value-weighted market factor return (Mkt-
RF) from the Kenneth French Data Library. OPT is the dynamic strategy that would have achieved the
maximum Sharpe ratio, ex post. State-dependent speeds of both strategies are fixed over the evaluation
window. For example, using 57.5 years of data from 1926-07 through 1983-12 to estimate speeds for DYN,
its Sharpe ratio over the subsequent 35-year evaluation period from 1981-07 through 2018-12 was 0.614.
Relative to the best possible ex-post state-dependent strategy, OPT, which had a Sharpe ratio of 0.623,
DYN was 98.5% = 0.614/0.623 efficient.

the special cases of static speeds. DYN consistently exhibits efficiency of 92% or higher across

different evaluation windows, reflecting its capacity to exploit performance opportunities out

of sample.

The out-of-sample performance of DYN also exhibits modest gains compared to static-

speed strategies. Figure 5 compares the Sharpe ratios of DYN and OPT with those of various

static-speed strategies over evaluation windows beginning from each date on the horizontal

axis through the end of the sample period. The time series values of DYN and OPT at

5-year-interval timestamps correspond to the values reported in Table 6. Note that the

static-speed strategy with highest Sharpe ratio is not always MED.29 Regardless of which

29Figure I.1 in Internet Appendix I is the same as Figure 5 but also includes Sharpe ratios for static speeds
a = 1

4 and a = 3
4 , highlighting that other static speeds can generate higher Sharpe ratios than MED.
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Figure 5: Sharpe Ratios (Month t to End of Sample): DYN vs. Static Strategies

Beginning Month t to 2018-12

Notes: This figure plots, for each month t in 1969-01 to 2004-01, the Sharpe ratio of various strategies over
the evaluation period beginning month t and ending December 2018. Strategies OPT and DYN are the same
as those described in Table 6. Static-speed strategies are the same as those described in Table 2.

static-speed strategy performs best, DYN edges out the best static-speed strategy, including

MED, uniformly across all evaluation periods. Although its Sharpe ratio outperformance on

an absolute scale is marginal in some periods (e.g., DYN’s 0.52 to MED’s 0.51 over the 50-year

evaluation window beginning 1969), DYN consistently attains nearly all of the performance

opportunities available (captured by OPT). For example, the gap between DYN and OPT is

consistently slim—efficiency never below 92%. In contrast, the gap between MED and OPT

is sometimes relatively large—MED as low as 75% efficiency. Therefore, from an ex-ante

point of view not knowing the best static speed, DYN offers a systematic approach to adjust

the speed.

Furthermore, DYN generates alpha with respect to MED. Figure 6 reports several time

series of performance metrics for DYN and MED over evaluation windows beginning from

each date on the horizontal axis through the end of the sample period. DYN uniformly

generates higher excess returns than MED (Figure 6(a)), but also uniformly generates higher

volatility (Figure 6(b)). Recall that MED completely exits the market after Corrections and

Rebounds, which eliminates its exposure to volatility as well as to return opportunities after

these states. In contrast, DYN takes (scaled-down) positions after these states, allowing
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DYN to take advantage of potentially favorable return/volatility trade-offs reflected in past

market-cycle return patterns. Figure 6(c) plots the time series of alphas of DYN with

respect to MED, showing an average of about 2.0% per annum across evaluation windows.

Figure 6(d) plots the t-statistics corresponding to these alphas and shows an average one-

sided significance level of about 5%. Despite the fact that their Sharpe ratios are relatively

close over the 50-year evaluation period beginning 1969, DYN exhibits statistically significant

alpha relative to MED at the one-sided 10% significance level.

Figure 6: Performance of DYN vs. MED (Month t to End of Sample)

(a) Average Returns (anlzd.)

Beginning Month t to 2018-12

(b) Return Volatilities (anlzd.)

Beginning Month t to 2018-12

(c) Alphas of DYN (anlzd.)

Beginning Month t to 2018-12

(d) Alpha t-Statistics of DYN

Beginning Month t to 2018-12

Notes: This figure plots, for each month t in 1969-01 to 2004-01, (a) the average returns and (b) volatilities
of DYN and MED, (c) the alphas of DYN with respect to MED, and (d) the alpha t-statistics of DYN with
respect to MED with one-sided significance reference levels over the evaluation period beginning month t
and ending December 2018. Strategy MED is the same as in Table 2 and strategy DYN is the same as in
Table 6.
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In Internet Appendix J, we analyze the sensitivity of the state-conditional speed estimates

of DYN to estimation error via block-bootstrap resampling of historical returns. We find

that state-dependent speed pairs that yield the highest performance for DYN tend to be

those in the region having relatively slow speed after Corrections and relatively fast speed

after Rebounds. Moreover, Sharpe ratio performance is relatively insensitive to variation of

speeds within this region.

4.2. Market-Cycle Patterns

The conclusion from our state-dependent speed analysis—elect slower-speed momentum

after Correction months and faster-speed momentum after Rebound months—is reinforced

by market cycle patterns, as those reported in Table 7.

Table 7: Market Cycle Transitions

Monthly Transition Probability (%)

Bullt+1 Correctiont+1 Beart+1 Reboundt+1 Upt+1 Downt+1

Bullt 62.8 34.8 2.1 0.3 63.3 36.7
Correctiont 61.2 29.9 8.8 0.0 61.2 38.8
Beart 9.0 0.0 55.0 36.0 45.0 55.0
Reboundt 14.3 1.6 42.9 41.3 55.6 44.4

Notes: This table reports the relative frequency of transitions from one market state (row) in month t to
another market state (column) in month t + 1 (first four columns) and the relative frequency of positive
(Up) and negative (Down) returns next month (last two columns) over the 50-year period from 1969-01 to
2018-12. Market state classifications are the same as those described in Table 3.

Table 7 reports for the 50-year evaluation period the relative frequency of each market

state in the subsequent month (first four columns) given the market state in the preceding

month (rows). It also reports the relative frequency of positive and negative returns in

the subsequent month (Up and Down states, respectively, in the last two columns) given the

market state in the preceding month (rows). First, Corrections tend to revert to Bulls. Given

the current month is a Correction state, then most of the time (61.2%) the next month is a

Bull month and an Up month. If we view a Correction state as an alarm that uptrend could

be turning to downtrend, then this alarm tends to be a false alarm. The fast strategy takes

a short position after Corrections, which is a bad bet. Therefore, adopting a slower-speed

momentum position after Corrections is a better bet. Second, the market is more likely to

go up after Rebounds. Given the current month is a Rebound state, then most of the time

(55.6%) the next month is an Up month. If we view a Rebound state as an alarm that

downtrend could be turning to uptrend, then regardless of the accuracy of this alarm, FAST
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takes a long position, which is a good bet. Therefore, adopting a faster-speed momentum

position after Rebounds is more effective than adopting slower speeds after Rebounds.

5. Evidence from Other Equity Markets

Table 8: Sharpe Ratios of Static-Speed Strategies in International Markets

Sharpe Ratio (anlzd.)

a = 0.00 a = 1.00 Average of a = 0.50
Country SLOW FAST SLOW, FAST MED

AUS 0.121 0.076 0.098 0.123
AUT 0.435 0.600 0.518 0.627
BEL 0.476 0.460 0.468 0.619
CAN 0.234 0.498 0.366 0.486
CHE 0.619 0.468 0.543 0.687
DEU 0.498 0.211 0.354 0.436
DNK 0.454 0.410 0.432 0.569
ESP 0.281 0.169 0.225 0.280
FIN 0.720 0.649 0.685 0.869
FRA 0.382 0.355 0.369 0.466
GBR 0.227 −0.111 0.058 0.072
HKG 0.274 0.451 0.363 0.443
IRL 0.339 0.309 0.324 0.413
ITA 0.539 0.016 0.277 0.351
JPN 0.411 0.127 0.269 0.333
NLD 0.488 0.090 0.289 0.391
NOR 0.376 0.621 0.498 0.669
SGP 0.184 0.502 0.343 0.462
SWE 0.440 0.303 0.371 0.475
USA 0.511 0.155 0.333 0.462

Notes: This table reports the Sharpe ratios (anlzd.) for various strategies applied to different country equity
markets evaluated over the period from 1981-01 to 2018-12 for most countries—first year of data (1980) is
used to define the SLOW signal prior to the evaluation period. Static-speed strategy weights are formed
according to wt(a) = (1− a)wSLOW,t + awFAST,t for speed parameter a ∈ [0, 1], where wSLOW,t, equals +1 if
the trailing 12-month return (arithmetic average monthly return) is nonnegative and otherwise equals −1;
and wFAST,t, equals +1 if the trailing 1-month return is non-negative and otherwise equals −1. MED is the
strategy for which a = 1

2 . Monthly strategy returns are formed as rt+1(a) = wt(a)rt+1, where rt+1 is the
excess equity return for the country. Excess returns are obtained via Datastream. See Main Appendix B for
data details. Green-highlighted values are larger than the average of SLOW and FAST values.

The conclusion to elect intermediate-speed momentum strategies from our static-speed

analysis using U.S. equity data in Section 3 carries over to international equity markets.

Table 8 reports the Sharpe ratios for static-speed momentum strategies applied in 20 country
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Table 9: Sharpe Ratios of the Dynamic-Speed Strategy in International Markets

Sharpe Ratio (anlzd.)

a = 0.00 0.25 0.50 0.75 1.00
Country SLOW MED FAST DYN (âCo, âRe)

AUS 0.363 0.412 0.415 0.346 0.256 0.516 (0.00, 1.00)
AUT 0.422 0.560 0.670 0.694 0.647 0.729 (0.60, 0.76)
BEL 0.678 0.718 0.679 0.547 0.392 0.815 (0.28, 1.00)
CAN 0.405 0.545 0.652 0.644 0.564 0.650 (0.61, 1.00)
CHE 0.644 0.774 0.832 0.750 0.605 0.956 (0.00, 0.94)
DEU 0.459 0.479 0.437 0.326 0.208 0.535 (0.00, 0.61)
DNK 0.599 0.662 0.650 0.531 0.385 0.557 (0.11, 1.00)
ESP 0.147 0.140 0.112 0.066 0.024 0.202 (0.00, 0.80)
FIN 0.604 0.703 0.699 0.513 0.320 0.787 (0.23, 0.75)
FRA 0.424 0.495 0.505 0.405 0.284 0.622 (0.39, 0.87)
GBR 0.303 0.219 0.067 −0.097 −0.205 0.477 (0.00, 1.00)
HKG 0.297 0.453 0.597 0.632 0.585 0.545 (0.25, 1.00)
IRL 0.624 0.694 0.697 0.604 0.474 0.721 (0.49, 0.68)
ITA 0.363 0.339 0.272 0.170 0.073 0.363 (0.00, 0.00)
JPN 0.519 0.566 0.559 0.478 0.370 0.519 (0.00, 0.00)
NLD 0.397 0.356 0.222 0.036 −0.095 0.461 (0.00, 0.80)
NOR 0.394 0.527 0.624 0.599 0.508 0.580 (0.59, 1.00)
SGP 0.288 0.392 0.473 0.470 0.415 0.531 (0.61, 1.00)
SWE 0.587 0.685 0.688 0.519 0.336 0.782 (0.14, 0.58)
USA 0.595 0.624 0.570 0.421 0.265 0.670 (0.00, 0.83)

Notes: This table reports the Sharpe ratios (anlzd.) for various strategies applied to different country
equity markets evaluated over the 15-year period from 2004-01 to 2018-12. Static-speed strategy weights
are formed according to wt(a) = (1− a)wSLOW,t + awFAST,t for speed parameter a ∈ [0, 1], where wSLOW,t,
equals +1 if the trailing 12-month return (arithmetic average monthly return) is nonnegative and otherwise
equals −1; and wFAST,t, equals +1 if the trailing 1-month return is non-negative and otherwise equals −1.
DYN strategy weights take the form (1 − as(t))wSLOW,t + as(t)wFAST,t, where speed as(t) depends on the
four observable market states at date t: Bu: wSLOW,t = wFAST,t = +1; Be: wSLOW,t = wFAST,t = −1;
Co: wSLOW,t = +1, wFAST,t = −1; and Re: wSLOW,t = −1, wFAST,t = +1. DYN speeds are based on
point estimates of the mean-variance optimal state-dependent speeds, as(t), using âBu = âBe = 1

2 and
sample versions of (30) and (31) for âCo and âRe, respectively, based on data before the evaluation window
beginning 1980-01. If either âCo or âRe fall outside the unit interval [0, 1], then we set its value to the
nearest endpoint, 0 or 1. Monthly strategy returns are formed as rt+1(a) = wt(a)rt+1, where rt+1 is the
excess equity market factor return for the country. Excess returns are obtained via Datastream. See Main
Appendix B for data details. Green-highlighted values are at least as large as the maximum static-speed
values and yellow-highlighted values are at least as large as the maximum of SLOW and FAST values.

equity markets and evaluated since 1981.30 For all countries in the table, as predicted by

Proposition 3, the Sharpe ratio for MED is higher than the average of the Sharpe ratios of

30Our data sample begins in 1980 for most countries. See Main Appendix B for data details. Data in the
first year (1980) is used to define the SLOW (12-month) signal for the first strategy return in 1981-01.
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SLOW and FAST.

Table 9 reports the Sharpe ratios for static-speed and dynamic-speed momentum strate-

gies applied in these 20 equity markets and evaluated over the last 15 years. Here, we use

the earlier part of the data sample before 2004 to estimate the state-conditional speeds of

the dynamic strategy used in the evaluation period (similarly to Section 4) for each country.

As before, if either âCo or âRe fall outside the unit interval [0, 1], then we set its value to the

nearest endpoint, 0 or 1. Because the estimation period for four states (Bull, Correction,

Bear, Rebound) is relatively short (20 years of data split four ways), the estimates are rel-

atively noisy, and the above restriction comes into play for approximately half of the speed

estimates in Table 9.

With few exceptions, the recommendation from our state-dependent speed analysis on

U.S. equity in Section 4 carries over to international equity markets: employ slower-speed

momentum after Corrections and faster-speed momentum after Rebounds. For most coun-

tries, the Sharpe ratio of the DYN strategy is higher than the highest static-speed strategy

(highlighted green in Table 9). The countries for which their DYN Sharpe ratios are not

greater than or equal to the highest static speed are Canada (CAN), Denmark (DNK), Hong

Kong (HKG), Japan (JNP), and Norway (NOR). Of these, all but Denmark and Hong Kong

have DYN Sharpe ratios at least as high as the maximum of SLOW and FAST. Nevertheless,

even for Denmark and Hong Kong, their DYN Sharpe ratios are higher than the average

Sharpe ratios of the SLOW and FAST strategies and higher than the Sharpe ratios of some

static-speed strategies.

6. Conclusion

We study the dynamics of elementary slow (12-month) and fast (1-month) monthly TS

momentum strategies both analytically and empirically. We find that the same conditions

that can make the slow strategy attractive overall relative to the fast strategy—higher per-

sistence in expected returns and high noise in realized returns—can also make it prone to

suffer more around turning points and, at these times, the fast strategy can be more effective.

The agreement or disagreement between the uptrend or downtrend indications of slow and

fast TS momentum implies four market cycles: Bull, Correction, Bear, and Rebound. These

market cycles provide a useful lens to view the challenges that momentum turning points

pose for TS momentum strategies. Intermediate-speed strategies, formed by blending slow

and fast TS momentum, vary the exposure to the good bets associated with uptrend (Bull)

or downtrend (Bear) phases and the bad bets associated with turning points (Correction or

Rebound). For the U.S. stock market, we find that intermediate-speed strategies empirically
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exhibit many advantages over slow and fast strategies, including higher Sharpe ratios, less

severe drawdowns, more positive skewness, and higher significance of alphas. We provide

analytical results that generalize our findings for Sharpe ratios and skewness to any market.

We find that both market timing and volatility timing play important but overlooked

roles for TS momentum. In particular, we provide a novel model-free decomposition of

momentum’s alpha into the sum of market-timing and volatility-timing components. Market

timing, the focus of recent TS momentum studies, reflects the covariance between strategy

positions and subsequent market returns; in contrast, volatility timing reflects the covariance

between strategy positions and subsequent squared market return deviations from their

mean. For the U.S. stock market, we estimate about two-thirds of TS momentum’s alpha

over our 50-year evaluation period is attributable to market timing, and the remaining one-

third is attributable to volatility timing.

We derive a dynamic momentum strategy that varies its speeds based on market cycles

so to maximize its Sharpe ratio. We implement an investable version and find modest,

but consistent improvements, when to compared to static strategies, in out-of-sample risk-

adjusted performance. We document that these results, with few exceptions, hold up across

international equity markets.

Our framework is purposely simple. Based on the sign of past returns, our elementary

strategies will either buy or sell. That is, we intentionally use binary signals that do not take

into account the magnitude of past returns. Not only does it allow us to appropriately relate

our work to previous literature, it allows us to look at four market states and analytically

derive the moments of various trading strategies. Further, we are able to tackle a heretofore

unanswered question: is it possible to dynamically adjust momentum speed to improve

performance characteristics over static strategies? Building a richer model that takes return

magnitudes into account is a topic of on-going research.

Although our paper does not speak directly to the sources of momentum, our findings

suggest motivation for new foundational studies. First, we present a model to discipline

the intuition that harvesting momentum returns is a function of persistence in underlying

expected return drivers, the influence of noise, and the speed of the momentum signal. One

could potentially distinguish between different explanations of momentum (e.g., rational

appeals to mean persistence, or behavioral appeals to noise trading) based on their im-

plications for the differences in overall and post-turning-point performance of strategies of

different speeds. Second, we show the value in detecting turning points and demonstrate

that turning points in the U.S. stock market may be coextensive with distinct behavior in

a variety of macroeconomic variables. These findings motivate new research that might tie

explanations of momentum to causes of momentum turning points, and thereby improve
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detection of turning points. Third, we show that volatility timing, in addition to market

timing, can be an intrinsic driver of the alpha of elementary TS momentum strategies. New

explanations of momentum might benefit from incorporating not only persistence in expected

returns, but also volatility predictability.
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Main Appendix A. Proofs

We present an auxiliary lemma, which we use to prove some propositions of the main text.

Lemma 8. Let Z1 and Z2 be bivariate standard normal random variables (mean zero, vari-

ance one) with correlation ρ. Then,

E[Z1|Z2 < z] = −ρ φ(z)

Φ(z)
, (A1)

E[Z1|Z2 ≥ z] = ρ
φ(z)

1− Φ(z)
, (A2)

where φ(z) = 1√
2π
e−

1
2
z2

and Φ(z) =
∫ z
−∞ φ(ζ)dζ are the probability density and cumulative

distribution functions, respectively, of a standard normal random variable.

Proof of Lemma 8. These standard results follow from the fact that the conditional distri-

bution of Z1 given Z2 is normal and from expected value calculations for truncated normal

random variables. See, for example, Maddala (1983), p. 367.

Proof of Proposition 1. Recall that µt = c + ϕµt−1 + εt, where c = 0, ϕ ∈ (0, 1), and {εt}
is normal white noise with variance σ2

ε > 0. Also, rt = µt + σzzt, where {σzzt} is normal

white noise with variance σ2
z > 0, independent of {εt}. Recall that the variance of rt is

σ2
r = σ2

ε

1−ϕ + σ2
z and the noise level θ ∈ (0, 1) is defined by θ = σ2

z

σ2
r
.

Consider signal st,K = 1
K

∑K
i=1 rt−i, the arithmetic K-period average trailing excess re-

turn, for K = 1, 2, . . .. The mean and variance of st,K are as follows. The mean is zero:

E[st,K ] = E
[

1
K

∑K
i=1 rt−i

]
= 1

K

∑K
i=1 E [rt−i] = 0, where the first equality follows by defi-

nition of st,K ; the second equality follows by linearity of the expectation operator; and the

final equality follows from E[rt] = 0 for all t.

If i = j, then E[rt−irt−j] = E[r2t−i] = Var[rt−i]+(E[rt−i])
2 = σ2

r , where the second equality

follows by the definition of variance; and the final equality follows from E[rt−i] = 0. If i 6= j,

then E[rt−irt−j] = Cov[rt−i, rt−j] = Cov[µt−i + σzzt−i, µt−j + σzzt−j] = Cov[µt−i, µt−j] =

ϕ|i−j|(1 − θ)σ2
r , where the first equality follows by definition of covariance and because

E[rt−i] = 0; the second equality follows by definition of rt; the third equality follows be-

cause zt−i and zt−j are independent for i 6= j; and the final equality follows by the standard

autocovariance of the weak-sense stationary AR(1) process {µt} and the definition of θ.

Thus,

E[rt−irt−j] =

{
σ2
r , if i = j,

ϕ|i−j|(1− θ)σ2
r , if i 6= j.

(A3)
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and

Var [st,K ] = E
[
s2t,K

]
= E

( 1

K

K∑
i=1

rt−i

)2
 =

1

K2

K∑
i=1

K∑
j=1

E [rt−irt−j]

=
1

K2

(
Kσ2

r + 2
K−1∑
i=1

K∑
j=i+1

ϕj−i(1− θ)σ2
r

)

=
σ2
r

K
+

2(1− θ)σ2
r

K2

K−1∑
i=1

i∑
j=1

ϕj

=
σ2
r

K
+

2(1− θ)σ2
r

K2

K−1∑
i=1

ϕ
1− ϕi

1− ϕ

= σ2
r

[
(1− θ)
K

K(1− ϕ2)− 2ϕ(1− ϕK)

K(1− ϕ)2
+

θ

K

]
> 0, (A4)

where the first equality follows because E[st,K ] = 0; the second equality follows by definition

of st,K ; the third equality follows by expansion of the square and linearity of the expectation

operator; the fourth equality follows by (A3); the fifth equality follows by the summation re-

ordering identity
∑K−1

i=1

∑K
j=i+1 ϕ

j−i =
∑K−1

i=1

∑i
j=1 ϕ

j; the sixth equality follows by identity∑i
j=1 ϕ

j = ϕ1−ϕi
1−ϕ ; the seventh equality follows by identity

∑K−1
i=1 (1−ϕi) = K− 1−ϕ1−ϕK−1

1−ϕ

and simplification; and the final inequality follows by standard properties of variance.

The covariance between rt and st,K satisfies:

Cov[rt, st,K ] = E

[
rt ·

1

K

K∑
i=1

rt−i

]
=

1

K

K∑
i=1

E[rt, rt−i] =
1

K

K∑
i=1

ϕi(1− θ)σ2
r

=
(1− θ)σ2

r

K
ϕ

1− ϕK

1− ϕ
> 0, (A5)

where the first equality follows by definition of covariance and st,K and because E[rt] =

E[st,K ] = 0; the second equality follows by linearity of the expectation operator; the third

equality follows by (A3); the fourth equality follows by identity
∑i

j=1 ϕ
j = ϕ1−ϕi

1−ϕ ; and the

final inequality follows because θ ∈ (0, 1), which implies 1 − θ > 0, and ϕ ∈ (0, 1), which

implies ϕK < 1 and 1− ϕK > 0 for all K = 1, 2, . . ..

By Section 2.1, excess returns of the two elementary time series (TS) momentum strate-

gies, SLOW and FAST, can be expressed as:

rSLOW,t = rt · sign (st,12) and rFAST,t = rt · sign(st,1), (A6)

where rt is the excess return of the market. Because rt and st,K are linear functions of
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independent sequences {εt} and {zt}, they are jointly normally distributed.

Let Z1 = rt
v

and Z2 =
st,K

SD[st,K ]
, where SD[st,K ] =

√
Var[st,K ] is the standard deviation of

st,K . Then, Z1 and Z2 are mean-zero unit-variance bivariate normal random variables with

correlation ρ, which satisfies:

ρ = Corr[Z1, Z2] = Cov[Z1, Z2] = Cov

[
rt
σr
,

st,K
SD[st,K ]

]
=

Cov[rt, st,K ]

σr · SD[st,K ]

=

(1−θ)
K

ϕ1−ϕK
1−ϕ√

(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK)
K(1−ϕ)2 + θ

K

> 0, (A7)

where the first equality follows by definition of ρ; the second equality follows because Z1

and Z2 have unit variance; the third equality follows by definition of Z1 and Z2; the fourth

equality follows by the bi-linearity of the covariance operator; the fifth equality follows by

substitution from (A4) and (A5) and cancellation of σ2
r in numerator and denominator; and

the final inequality follows because σr > 0 and the covariance and standard deviation of the

fourth equalities are strictly positive by (A4) and (A5).

The expected strategy return satisfies:

E[rt · sign (st,K)] = E

[
σr
rt
σr
· sign

(
st,K

SD[st,K ]

)]
= σr · E[Z1 · sign(Z2)]

= σr (−E[Z1|Z2 < 0]P[Z2 < 0] + E[Z1|Z2 ≥ 0]P[Z2 ≥ 0])

= σr

(
ρ
φ(0)

Φ(0)

1

2
+ ρ

φ(0)

1− Φ(0)

1

2

)

=

√
2
π
σr

(1−θ)
K

ϕ1−ϕK
1−ϕ√

(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK)
K(1−ϕ)2 + θ

K

> 0, (A8)

where the first equality follows because σr and SD[st,K ] are positive; the second equality

follows by definition of Z1 and Z2; the third equality follows by the law of total expectation;

the fourth equality follows by (A1) and (A2), respectively, of Lemma 8; the fifth equality fol-

lows because Φ(0) = 1
2
, φ(0) = 1√

2π
, and by (A7) plus simplification; and the final inequality

follows because ρ in the fourth equality is strictly positive by (A7) and all other terms in

the fourth equality are strictly positive.
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The variance of the strategy return satisfies:

Var[rt · sign (st,K)] = E[(rt · sign (st,K))2]− (E[rt · sign (st,K)])2

= σ2
r −

2
π
σ2
r

(
(1−θ)
K

ϕ1−ϕK
1−ϕ

)2
(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK)
K(1−ϕ)2 + θ

K

= σ2
r

1−
2
π

(
(1−θ)
K

ϕ1−ϕK
1−ϕ

)2
(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK)
K(1−ϕ)2 + θ

K

 > 0, (A9)

where the first equality follows by definition of variance; the second equality follows because

E[(rt · sign (st,K))2] = E[r2t ] = Var[rt] = σ2
r and from substitution of (A8); the third equality

follows by factorization; and the final inequality follows by standard properties of variance.

The Sharpe ratio of the strategy return satisfies:

Sharpe[rt · sign (st,K)] =
E[rt · sign (st,K)]

SD[rt · sign (st,K)]

=

√
2
π
σr

(1−θ)
K

ϕ 1−ϕK
1−ϕ√

(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK )

K(1−ϕ)2
+ θ
K√√√√σ2

r

[
1−

2
π

(
(1−θ)
K

ϕ 1−ϕK
1−ϕ

)2

(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK )

K(1−ϕ)2
+ θ
K

]

=

√√√√ 2
π
(1− θ)2ϕ2

(1−θ)[K(1−ϕ2)−2ϕ(1−ϕK)]+θK(1−ϕ)2
(1−ϕK)2

− 2
π
(1− θ)2ϕ2

> 0, (A10)

where the first equality follows by definition; the second equality follows by substitution from

(A8) and (A9); the third equality follows by simplification; and the final inequality follows

because the numerator and denominator in the first equality are both strictly positive by

(A8) and (A9). By (A6), evaluation of (A10) at K = 1 and K = 12 with simplification and

multiplying by
√

12 to annualize completes the proof.

Proof of Proposition 2. Recall that µt = c + ϕµt−1 + εt, where c = 0, ϕ ∈ (0, 1), and {εt}
is normal white noise with variance σ2

ε > 0. Also, rt = µt + σzzt, where {σzzt} is normal

white noise with variance σ2
z > 0, independent of {εt}. Recall that the variance of rt is

σ2
r = σ2

ε

1−ϕ + σ2
z and the noise level θ ∈ (0, 1) is defined by θ = σ2

z

σ2
r
.

Let y = [rt st,K ]′ be a column vector of the return and K-month trailing return signal,

respectively, where st,K = 1
K

∑K
i=1 rt−i and E[st,K ] = 0 as in the proof of Proposition 1, and

′ is the transpose operator. Let x = [µt−1 µt−2]
′ be a column vector of the two previous
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month’s expected returns. Note that each component of y and x has zero mean. Because all

components of y and x are linear combinations of independent normal random variables, y

and x are multivariate normal random variables with covariance matrix[
Σyy Σyx

Σxy Σxx

]
, (A11)

where Σyy = Cov[y, y], Σyx = Cov[y, x] = Σ′xy, and Σxx = Cov[x, x] are each 2 × 2 sub-

matrices. By standard properties of the multivariate normal distribution, the conditional

distribution of y given x is also multivariate normally distributed, y|x ∼ N (µy|x,Σy|x), where

µy|x = ΣyxΣ
−1
xxx, (A12)

Σy|x = Σyy − ΣyxΣ
−1
xxΣyx. (A13)

The covariance between returns and trailing expected returns satisfies

Cov[rt, µt−i] = Cov[µt + σzzt, µt−i] = Cov[µt, µt−i] = (1− θ)σ2
rϕ

i, (A14)

for i = 1, 2, where the first equality follows by definition of rt; the second equality follows by

independence of zt and µt−i; and the final equality follows by the autocovariance properties

of the AR(1) expected return process. The covariances between trailing return signal st,K

and first and second previous expected returns, respectively, satisfy:

Cov[st,K , µt−1] =
1

K

K−1∑
i=0

(1− θ)σ2
rϕ

i =
1− θ
K

σ2
r

1− ϕK

1− ϕ
, (A15)

Cov[st,K , µt−2] =
1

K

[
(1− θ)σ2

rϕ+
K−2∑
i=0

(1− θ)σ2
rϕ

i

]
=

1− θ
K

σ2
r

[
ϕ+

1− ϕK−1

1− ϕ

]
, (A16)

where the first equality in each equality chain follows by the definition of st,K , the bi-linearity

of the covariance operator, because Cov[rt−i, µt−1] = Cov[µt−i, µt−1] by definition of rt and

independence of zt and µt−1, and by the autocovariance properties of the AR(1) expected

return process evaluated at lags 0 up to K − 1; and the final equalities follow by application

of the identity
∑N−1

i=0 ϕi = 1−ϕN
1−ϕ .
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Thus, the covariance sub-matrices satisfy the following:

Σyy = σ2
r ·

[
1 (1−θ)

K
ϕ1−ϕK

1−ϕ
(1−θ)
K

ϕ1−ϕK
1−ϕ

(1−θ)
K

K(1−ϕ2)−2ϕ(1−ϕK)
K(1−ϕ)2 + θ

K

]
, (A17)

Σyx = Σ′xy = σ2
r(1− θ) ·

[
ϕ ϕ2

1
K

1−ϕK
1−ϕ

1
K

(
ϕ+ 1−ϕK−1

1−ϕ

) ] , (A18)

Σxx = σ2
r(1− θ) ·

[
1 ϕ

ϕ 1

]
. (A19)

Equation (A17) follows by definition, σ2
r = Var[rt], and from(A5) and (A4). Equation

(A18) follows by (A14), (A15), and (A16). Equation (A19) follows from the autocovariance

properties of the AR(1) expected return process {µt}.
Using (A18) and (A19), from standard matrix operations and simplification, we obtain:

ΣyxΣ
−1
xx = σ2

r(1− θ) ·

[
ϕ ϕ2

1
K

1−ϕK
1−ϕ

1
K

(
ϕ+ 1−ϕK−1

1−ϕ

) ](σ2
r(1− θ) ·

[
1 ϕ

ϕ 1

])−1

=

[
ϕ ϕ2

1
K

1−ϕK
1−ϕ

1
K

(
ϕ+ 1−ϕK−1

1−ϕ

) ][ 1
1−ϕ2

−ϕ
1−ϕ2

−ϕ
1−ϕ2

1
1−ϕ2

]

=

[
ϕ 0
1
K

1
K

1−ϕK−1

1−ϕ

]
. (A20)

From (A12) and (A20) we obtain:

E[rt|µt−1, µt−2] = ϕµt−1, (A21)

E[st,K |µt−1, µt−2] =
1

K

(
µt−1 +

1− ϕK−1

1− ϕ
µt−2

)
. (A22)

From (A20) and the transpose of (A18), and from standard matrix operations and sim-

plification, we obtain:

ΣyxΣ
−1
xxΣxy =

[
ϕ 0
1
K

1
K

1−ϕK−1

1−ϕ

]
·

(
σ2
r(1− θ) ·

[
ϕ 1

K
1−ϕK
1−ϕ

ϕ2 1
K

(
ϕ+ 1−ϕK−1

1−ϕ

) ])

= σ2
r(1− θ) ·

[
ϕ2 1

K
ϕ1−ϕK

1−ϕ
1
K

(
ϕ+ ϕ2 1−ϕK−1

1−ϕ

)
1
K2

(
1−ϕK
1−ϕ + 1−ϕK−1

1−ϕ

(
ϕ+ 1−ϕK−1

1−ϕ

)) ] .
(A23)
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By (A13), (A17), and (A23), with simplification we obtain:

Var[st,K |µt−1, µt−2] = σ2
r

(
(1− θ)
K

K(1− ϕ2)− 2ϕ(1− ϕK)

K(1− ϕ)2
+

θ

K

)
− σ2

r(1− θ)
(

1

K2

(
1− ϕK

1− ϕ
+

1− ϕK−1

1− ϕ

(
ϕ+

1− ϕK−1

1− ϕ

)))
=
σ2
r(1− θ)
K

[
1 + ϕ

1− ϕ
+

1

K
− 2(1− ϕK) + (1− ϕK−1)2

K(1− ϕ)2

]
+
σ2
rθ

K
. (A24)

The conditional expected value of the sign of the momentum signal given µt−1 and µt−2

satisfies:

E[sign(st,K)|µt−1, µt−2] = P[st,K > 0|µt−1, µt−2]−P[st,K ≤ 0|µt−1, µt−2]

= 2P[st,K > 0|µt−1, µt−2]− 1

= 2P

[
st,K − E[st,K |µt−1, µt−2]

SD[st,K |µt−1, µt−2]
> − E[st,K |µt−1, µt−2]

SD[st,K |µt−1, µt−2]

∣∣∣∣µt−1, µt−2]− 1

= 2Φ

(
E[st,K |µt−1, µt−2]

SD[st,K |µt−1, µt−2]

)
− 1

= 2Φ

 1
K

(
µt−1 + 1−ϕK−1

1−ϕ µt−2

)
σr

√
(1−θ)
K

[
1+ϕ
1−ϕ + 1

K
− 2(1−ϕK)+(1−ϕK−1)2

K(1−ϕ)2

]
+ θ

K

− 1, (A25)

where Φ(·) is the standard normal cumulative distribution function and where the first

equality follows by the law of total expectation; the second equality follows by difference

of probabilities of complementary events; the third equality follows by subtracting the con-

ditional mean and dividing by conditional standard deviation (SD[st,K |µt−1, µt−2]) on both

sides of the interior inequality; the fourth equality follows because the conditional distribu-

tion of demeaned and inverse-standard-deviation scaled st,K is conditional standard normal

and by 1−Φ(−z) = Φ(z) for all z; and the final equality follows by substitution from (A22)

and the square root of (A24).

By (A13), (A17), and (A23) with simplification we obtain Cov[rt, st,K |µt−1, µt−2] = 0,

which implies that rt and st,K are conditionally independent given µt−1 and µt−2. Therefore,
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the conditional expected strategy return given µt−1 and µt−2 satisfies:

E[rt · sign(st,K)|µt−1, µt−2] = E[rt|µt−1, µt−2] · E[sign(st,K)|µt−1, µt−2]

= ϕµt−1 ·

2Φ

 1
K

(
µt−1 + 1−ϕK−1

1−ϕ µt−2

)
σr

√
(1−θ)
K

[
1+ϕ
1−ϕ + 1

K
− 2(1−ϕK)+(1−ϕK−1)2

K(1−ϕ)2

]
+ θ

K

− 1

 ,
(A26)

where the second equality follows by substitution from (A21) and (A25). Evaluation of

(A26) at K = 1 and K = 12 with simplification we obtain the conditional expected returns

of FAST and SLOW, respectively, given the most recent two (unobservable) consecutive

return means, as stated in the proposition:

E[rFAST,t|µt−1, µt−2] = ϕµt−1 ·
[
2Φ

(
µt−1

σr
√
θ

)
− 1

]
, (8)

E[rSLOW,t|µt−1, µt−2] = ϕµt−1 ·

2Φ

 1
12

(
µt−1 + 1−ϕ11

1−ϕ µt−2

)
σr

√
(1−θ)
12

[
1+ϕ
1−ϕ + 1

12
− 2(1−ϕ12)+(1−ϕ11)2

12(1−ϕ)2

]
+ θ

12

− 1

 ,
(9)

where Φ(·) is the standard normal cumulative distribution function.

Finally, we show (8) is strictly positive for µt−1 6= 0 and obtain the inequalities (10) of

the proposition. We use the identity: sign(2Φ(z) − 1) = sign(z) for all z. Therefore, (8) is

positive because, if µt−1 > 0, then 2Φ
(
µt−1

v
√
θ

)
−1 > 0, so the product ϕµt−1 ·

[
2Φ
(
µt−1

v
√
θ

)
− 1
]

is positive; whereas, if µt−1 < 0, then 2Φ
(
µt−1

v
√
θ

)
− 1 < 0, so the product is positive. Note

that this argument also proves the first inequality of (10).

For the second inequality of (10), we consider two cases. Case 1: µt−1 < 0 < µt−2.

In this case, |µt−1| < 1−ϕ12

1−ϕ |µt−2| implies −µt−1 < 1−ϕ12

1−ϕ µt−2, which implies µt−1 < 0 <

µt−1 + 1−ϕ12

1−ϕ µt−2. Case 2: µt−1 > 0 > µt−2. In this case, |µt−1| < 1−ϕ12

1−ϕ |µt−2| implies

µt−1 < −1−ϕ12

1−ϕ µt−2, which implies µt−1 + 1−ϕ12

1−ϕ µt−2 < 0 < µt−1. In either case, µt−1 and

µt−1 + 1−ϕ12

1−ϕ µt−2 are opposite sign. Therefore, by the identity sign(2Φ(z)− 1) = sign(z) for

all z, the term in square brackets of (9) is always opposite sign of ϕµt−1 and, therefore, its

product with ϕµt−1 is strictly negative, which completes the proof.

Proof of Proposition 3. We show first that the exact decomposition for the Sharpe ratio in
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(16) holds. First, note that

E[rt+1(a)] = E[((1− a)wSLOW,t + awFAST,t)rt+1]

= (1− a)E[rSLOW,t+1] + aE[rFAST,t+1], (A27)

where the first equality follows by (12), and the second equality follows by definition of

SLOW and FAST in Section 2.1. Second,

E[wSLOW,twFAST,t r
2
t+1] = E[r2t+1|Bu

Be]P[Bu
Be]− E[r2t+1|Co

Re]P[Co
Re]

= (E[r2t+1]− E[r2t+1|Co
Re]P[Co

Re])− E[r2t+1|Co
Re]P[Co

Re]

= E[r2t+1]− 2E[r2t+1|Co
Re]P[Co

Re], (A28)

where the first equality follows by the law of total expectation, the fact that SLOW and

FAST have the same signs after Bull or Bear and the opposite signs after Correction or

Rebound, and the fact that the weights of SLOW and FAST each have magnitude one; and

the second equality follows by the law of total expectation. Third,

Var[wSLOW,t rt+1] = E[r2t+1]− (E[wSLOW,t rt+1])
2, (A29)

Var[wFAST,t rt+1] = E[r2t+1]− (E[wFAST,t rt+1])
2, (A30)

Cov[wSLOW,t rt+1, wFAST,t rt+1] = E[wSLOW,twFAST,t r
2
t+1]− E[wSLOW,t rt+1]E[wFAST,t rt+1]

= E[r2t+1]− 2E[r2t+1|Co
Re]P[Co

Re]

− E[wSLOW,t rt+1]E[wFAST,t rt+1], (A31)

where the first two equalities follow by definition of variance and the fact that the weights of

SLOW and FAST have magnitude one; the third equality follows by definition of covariance;

and the fourth equality follows by (A28). Using these facts, the variance of a momentum
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strategy of any speed satisfies

Var[rt+1(a)] = Var[((1− a)wSLOW,t + awFAST,t) rt+1]

= (1− a)2Var[wSLOW,t rt+1] + a2Var[wFAST,t rt+1]

+ 2(1− a)aCov[wSLOW,t rt+1, wFAST,t rt+1]

= (1− a)2[E[r2t+1]− (E[wSLOW,trt+1])
2] + a2[E[r2t+1]− (E[wFAST,trt+1])

2]

+ 2(1− a)a {E[r2t+1]− 2E[r2t+1|Co
Re]P[Co

Re]− E[wSLOW,trt+1]E[wFAST,trt+1]}

= E[r2t+1]− 4(1− a)aE[r2t+1|Co
Re]P[Co

Re]

− {(1− a)E[wSLOW,trt+1] + aE[wFAST,trt+1]}2

= (E[r2t+1|Bu
Be]P[Bu

Be] + E[r2t+1|Co
Re]P[Co

Re])− 4(1− a)aE[r2t+1|Co
Re]P[Co

Re]

− {E[((1− a)wSLOW,t + awFAST,t)rt+1]}2

= E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t |Co
Re]P[Co

Re]− (E[rt+1(a)])2, (A32)

where the first equality follows by definition of rt+1(a) in (12); the second equality follows by

definition of variance of a sum; the third equality follows by substitution of (A29), (A30),

and (A31); the fourth equality follows by collecting terms; the fifth equality follows by the

law of total expectation; and the final equality follows by definition of rt+1(a) in (12).

Next, note that D(a, µ) in (17), whose definition is repeated here for convenience, satisfies

D(a, µ) =

√
E[r2t+1]− µ2

E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t+1|Co
Re]P[Co

Re]− (E[rt+1(a)])2
, (17)

=

√
E[r2t+1]− µ2

Var[rt+1(a)]
, (A33)

where the last equality follows from (A32). In particular, applying (A29) and (A30), respec-

tively, gives

D(a,E[rSLOW,t+1]) =

√
E[r2t+1]− (E[rSLOW,t+1])2

Var[rt+1(a)]
=

SD[rSLOW,t+1]

SD[rt+1(a)]
, (A34)

D(a,E[rFAST,t+1]) =

√
E[r2t+1]− (E[rFAST,t+1])2

Var[rt+1(a)]
=

SD[rFAST,t+1]

SD[rt+1(a)]
. (A35)
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Hence, the Sharpe ratio of a momentum strategy of any speed satisfies the following:

Sharpe[rt+1(a)] =
E[rt+1(a)]

SD[rt+1(a)]

=
(1− a)E[rSLOW,t+1] + aE[rFAST,t+1]

SD[rt+1(a)]

= (1− a)
E[rSLOW,t+1]

SD[rSLOW,t+1]

SD[rSLOW,t+1]

SD[rt+1(a)]
+ a

E[rFAST,t+1]

SD[rFAST,t+1]

SD[rFAST,t+1]

SD[rt+1(a)]

= (1− a)Sharpe[rSLOW,t+1]D(a,E[rSLOW,t+1])

+ aSharpe[rFAST,t+1]D(a,E[rFAST,t+1]), (A36)

where the first equality follows by definition of the Sharpe ratio; the second equality follows

by (A27); the third equality follows by factoring out each ratio of standard deviations in

each summand; and the final equality follows by definition of the Sharpe ratio and equalities

(A34) and (A35). The approximation in (18) of the proposition follows immediately by the

assumption in the proposition.

Finally, we derive tight bounds for the multiplier D(a, 0) in (19) on a ∈ [0, 1]. First, note

that

(2a− 1)2 ≤ 1, a ∈ [0, 1], (A37)

because (2a− 1)2 is a convex function of a, which therefore achieves its maximum value at

the boundary of its domain, and is equal to 1 at both of its boundaries. Subtract 1 from both

sides of (A37) and then multiply each side of the resultant inequality by the nonnegative

quantity E[r2t+1|Co
Re]P[Co

Re] to obtain:

[(2a− 1)2 − 1]E[r2t+1|Co
Re]P[Co

Re] ≤ 0, a ∈ [0, 1]. (A38)

Add E[r2t+1] to both sides of (A38) and use the law of total expectation, E[r2t+1] = E[r2t+1|Bu
Be]P[Bu

Be]+

E[r2t+1|Co
Re]P[Co

Re], to obtain:

E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t+1|Co
Re]P[Co

Re] ≤ E[r2t+1], a ∈ [0, 1]. (A39)

Therefore,

D(a, 0) =

√
E[r2t+1]

E[r2t+1|Bu
Be]P[Bu

Be] + (2a− 1)2E[r2t+1|Co
Re]P[Co

Re]
(19)

≥ 1,
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since the numerator inside the square root is always at least as large as the denominator,

by (A39). The term (2a− 1)2E[r2t+1|Co
Re]P[Co

Re] in the denominator is always nonnegative and

equals zero at a = 1
2
, which therefore maximizes D(a, 0) on [0, 1]. If E[r2t+1|Co

Re]P[Co
Re] > 0 then

the term is only zero at a = 1
2
, making it the unique maximizer of D(a, 0), which completes

the proof.

Proof of Proposition 4. First, note that

Cov[wt(a), (rt+1 − E[rt+1])
2] = Cov[wt(a), r2t+1 − 2rt+1E[rt+1] + (E[rt+1])

2]

= Cov[wt(a), r2t+1]− 2Cov[wt(a), rt+1]E[rt+1], (A40)

where the first equality follows by squaring the term inside the second covariance argument;

and the second equality follows by bilinearity of the covariance operator and the fact that

(E[rt+1])
2 is a constant and hence has zero covariance with wt(a).

Second,

Cov[rt+1(a), rt+1] = Cov[wt(a)rt+1, rt+1]

= E[wt(a)r2t+1]− E[wt(a)rt+1]E[rt+1]

= (Cov[wt(a), r2t+1] + E[wt(a)]E[r2t+1])

− (Cov[wt(a), rt+1] + E[wt(a)]E[rt+1])E[rt+1]

= E[wt(a)](E[r2t+1]− (E[rt+1])
2)

−Cov[wt(a), rt+1]E[rt+1] + Cov[wt(a), r2t+1]

= E[wt(a)]Var[rt+1]−Cov[wt(a), rt+1]E[rt+1] + Cov[wt(a), r2t+1]

= E[wt(a)]Var[rt+1] + Cov[wt(a), rt+1]E[rt+1]

+ Cov[wt(a), (rt+1 − E[rt+1])
2], (A41)

where the first equality follows by definition of rt+1(a) = wt(a)rt+1; the second equality

follows by definition of covariance; the third equality follows by two applications of the

definition of covariance (once with E[wt(a)r2t+1] = Cov[wt(a), r2t+1] + E[wt(a)]E[r2t+1] and

again with E[wt(a)rt+1] = Cov[wt(a), rt+1] − E[wt(a)]E[rt+1]) similar to the decomposition

in (22); the fourth equality follows by rearrangement of terms; the fifth equality follows by

definition of variance; and the last equality follows by substitution for Cov[wt(a), r2t+1] from

its implicit relation in (A40).

Next, the expression for beta in (24) follows immediately from (A41) (equivalently, (23))

and the definition of beta as the contemporaneous covariance scaled by the underlying market
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return variance. Finally,

Alpha[rt+1(a)]

= E[rt+1(a)]−Beta[rt+1(a)]E[rt+1]

= Cov[wt(a), rt+1] + E[wt(a)]E[rt+1]

−
(

E[wt(a)] +
Cov[wt(a), rt+1]

Var[rt+1]
E[rt+1] +

Cov[wt(a), (rt+1 − E[rt+1])
2]

Var[rt+1]

)
E[rt+1]

= Cov[wt(a), rt+1]

(
1− (E[rt+1])

2

Var[rt+1]

)
− Cov[wt(a), (rt+1 − E[rt+1])

2]

Var[rt+1]
E[rt+1], (A42)

where the first equality follows by definition of alpha; the second equality follows by co-

variance decomposition of E[rt+1(a)] as in (22) and substitution of the expression for beta

in (24); and the last equality follows by rearrangement. The approximation in (26) follows

immediately from the assumption in the proposition, and completes the proof.

Proof of Lemma 5. The proof proceeds according to the following chain of equalities:

Skew[Y ] =
E[(Y − E[Y ])3]

(SD[Y ])3

=
E[Y 3 − 3Y 2E[Y ] + 3YE[Y ]2 − E[Y ]3]

(SD[Y ])3

=
E[Y 3]

(SD[Y ])3
− 3

E[Y ](E[Y 2]− E[Y ]2)

(SD[Y ])3
− E[Y ]3

(SD[Y ])3

=
E[Y 3]

(SD[Y ])3
− 3

E[Y ]

SD[Y ]
−
(

E[Y ]

SD[Y ]

)3

=
E[Y 3]

(SD[Y ])3
− Sharpe[Y ]

(
3 + (Sharpe[Y ])2

)
,

where the first equality is by definition of skewness; the second equality follows by expanding

the cube inside the expectation of the numerator; the third equality follows by linearity of

the expectation operator; the fourth equality follows by the fact that (SD[Y ])2 = Var[Y ] =

E[Y 2]− E[Y ]2; and the final equality follows by substitution Sharpe[Y ] = E[Y ]
SD[Y ]

and gath-

ering terms, which completes the proof.
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Proof of Proposition 6. First, note that

E[r3t+1(a)] = E[(((1− a)wSLOW,t + awFAST,t)rt+1)
3]

= E
[
((1− a)3w3

SLOW,t + 3(1− a)2aw2
SLOW,twFAST,t

+3(1− a)a2wSLOW,tw
2
FAST,t + a3w3

FAST,t) r
3
t+1

]
= E

[
((1− a)3wSLOW,t + 3(1− a)2awFAST,t

+3(1− a)a2wSLOW,t + a3wFAST,t) r
3
t+1

]
= (1− a)((1− a)2 + 3a2)E[wSLOW,t r

3
t+1] + a(3(1− a)2 + a2)E[wFAST,t r

3
t+1]

= (1− a)((1− a)2 + 3a2)
E[(rSLOW,t+1)

3]

(SD[rSLOW,t+1])3
(SD[rSLOW,t+1])

3

+ a(3(1− a)2 + a2)
E[(rFAST,t+1)

3]

(SD[rFAST,t+1])3
(SD[rFAST,t+1])

3, (A43)

where the first equality follows by definition of rt+1(a) in (12); the second equality follows

by expanding the cube inside the expectation; the third equality follows from the fact that

w3
SLOW,t = wSLOW,t, w

3
FAST,t = wFAST,t, and w2

SLOW,t = w2
FAST,t = 1; the fourth equality follows

by linearity of the expectation operator and collecting terms; and the last equality follows

from the fact that w3
SLOW,t = wSLOW,t and w3

FAST,t = wFAST,t, by definitions rSLOW,t+1 =

wSLOW,t rt+1 and rFAST,t+1 = wFAST,t rt+1, and by multiplying and dividing each summand by

the corresponding cubed standard deviation term. Second,

Skew[rt+1(a)] =
E[r3t+1(a)]

(SD[rt+1(a)])3
− Sharpe[rt+1(a)](3 + (Sharpe[rt+1(a)])2)

= (1− a)((1− a)2 + 3a2)
E[(rSLOW,t+1)

3]

(SD[rSLOW,t+1])3
(SD[rSLOW,t+1])

3

(SD[rt+1(a)])3

+ a(3(1− a)2 + a2)
E[(rFAST,t+1)

3]

(SD[rFAST,t+1])3
(SD[rFAST,t+1])

3

(SD[rt+1(a)])3

− Sharpe[rt+1(a)](3 + (Sharpe[rt+1(a)])2)

= (1− a)((1− a)2 + 3a2)D3(a,E[rSLOW,t+1])

×
(
Skew[rSLOW,t+1] + Sharpe[rSLOW,t+1](3 + (Sharpe[rSLOW,t+1])

2)
)

+ a(3(1− a)2 + a2)D3(a,E[rFAST,t+1])

×
(
Skew[rFAST,t+1] + Sharpe[rFAST,t+1](3 + (Sharpe[rFAST,t+1])

2)
)

− 3 Sharpe[rt+1(a)]− (Sharpe[rt+1(a)])3, (A44)

where the first equality follows by application of Lemma 5 at Y = rt+1(a); the second equality

follows by substitution of (A43) for E[r3t+1(a)]; and the last equality follows by application
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of Lemma 5 at Y = rSLOW,t+1 and Y = rFAST,t+1 and by definition of D(a, µ) in (17), for

which D(a,E[rSLOW,t+1]) =
SD[rSLOW,t+1]

SD[rt+1(a)]
and D(a,E[rFAST,t+1]) =

SD[rFAST,t+1]

SD[rt+1(a)]
. Continuing

from (A44) above and substituting for Sharpe[rt+1(a)] with (16) of Proposition 3, we have

Skew[rt+1(a)]

= (1− a)((1− a)2 + 3a2)D3(a,E[rt+1(0)])

×
(
Skew[rSLOW,t+1] + Sharpe[rSLOW,t+1](3 + (Sharpe[rSLOW,t+1])

2)
)

+ a(3(1− a)2 + a2)D3(a,E[rt+1(1)])

×
(
Skew[rFAST,t+1] + Sharpe[rFAST,t+1](3 + (Sharpe[rFAST,t+1])

2)
)

− 3[(1− a) Sharpe[rSLOW,t+1]D(a,E[rt+1(0)]) + aSharpe[rFAST,t+1]D(a,E[rt+1(1)])]

− [(1− a) Sharpe[rSLOW,t+1]D(a,E[rt+1(0)]) + aSharpe[rFAST,t+1]D(a,E[rt+1(1)])]3.

(A45)

Continuing from (A45) above, expanding the cube and grouping terms, we have

Skew[rt+1(a)]

= (1− a)((1− a)2 + 3a2)X3(a,E[rt+1(0)])Skew[rSLOW,t+1]

+ a(3(1− a)2 + a2)X3(a,E[rt+1(1)])Skew[rFAST,t+1]

+ 3[(1− a) Sharpe[rSLOW,t+1]D(a,E[rt+1(0)])
(
((1− a)2 + 3a2)D2(a,E[rt+1(0)])− 1

)
+ aSharpe[rFAST,t+1]D(a,E[rt+1(1)])

(
(3(1− a)2 + a2)D2(a,E[rt+1(1)])− 1

)
]

+ 3(1− a)a[(1− a) Sharpe[rFAST,t+1]D(a,E[rt+1(1)])− aSharpe[rSLOW,t+1]D(a,E[rt+1(0)])]

×
(
(Sharpe[rFAST,t+1])

2D2(a,E[rt+1(1)])− (Sharpe[rSLOW,t+1])
2D2(a,E[rt+1(0)])

)
.

(A46)

Define

γ(a) := a(a2 + 3(1− a)2), (A47)

and note that γ(a) ∈ [0, 1] with γ(0) = 0, γ(1
2
) = 1

2
, and γ(1) = 1. Also, note that
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1− γ(a) = (1− a)((1− a)2 + 3a2). Then,

Skew[rt+1(a)]

= (1− γ(a))D3(a,E[rt+1(0)])Skew[rSLOW,t+1] + γ(a)D3(a,E[rt+1(1)])Skew[rFAST,t+1]

+ 3[(1− a) Sharpe[rSLOW,t+1]D(a,E[rt+1(0)])
(
((1− a)2 + 3a2)D2(a,E[rt+1(0)])− 1

)
+ aSharpe[rFAST,t+1]D(a,E[rt+1(1)])

(
(3(1− a)2 + a2)D2(a,E[rt+1(1)])− 1

)
]

+ 3(1− a)a[(1− a) Sharpe[rFAST,t+1]D(a,E[rt+1(1)])− aSharpe[rSLOW,t+1]D(a,E[rt+1(0)])]

×
(
(Sharpe[rFAST,t+1])

2D2(a,E[rt+1(1)])− (Sharpe[rSLOW,t+1])
2D2(a,E[rt+1(0)])

)
,

(A48)

where γ(a) is as defined in (A47).

Approximate D(a,E[rt+1(0)]) ≈ D(a,E[rt+1(1)]) ≈ D(a, 0). Then,

Skew[rt+1(a)] ≈ [(1− γ(a))Skew[rSLOW,t+1] + γ(a)Skew[rFAST,t+1]]D
3(a, 0)

+ 3[(1− a) Sharpe[rSLOW,t+1]
(
((1− a)2 + 3a2)D2(a, 0)− 1

)
+ aSharpe[rFAST,t+1]

(
(3(1− a)2 + a2)D2(a, 0)− 1

)
]D(a, 0)

+ 3(1− a)a[(1− a) Sharpe[rFAST,t+1]− aSharpe[rSLOW,t+1]]

×
(
(Sharpe[rFAST,t+1])

2 − (Sharpe[rSLOW,t+1])
2
)
D3(a, 0). (A49)

For the special case of a = 1
2
, this approximation becomes:

Skew[rt+1(
1
2
)] (A50)

≈ 1
2
(Skew[rSLOW,t+1] + Skew[rFAST,t+1])D

3(1
2
; 0)

+ 3[1
2
Sharpe[rSLOW,t+1] + 1

2
Sharpe[rFAST,t+1]]D(1

2
; 0)
(
D2(1

2
; 0)− 1

)
+ 3

4
( Sharpe[rFAST,t+1]− Sharpe[rSLOW,t+1])

2

×
(
1
2
(Sharpe[rFAST,t+1] + Sharpe[rSLOW,t+1])D(1

2
; 0)
)
D2(1

2
; 0)

= 1
2
(Skew[rSLOW,t+1] + Skew[rFAST,t+1])D

3(1
2
; 0)

+ 3 Sharpe[rt+1(
1
2
)]
(
D2(1

2
; 0)− 1

)
+ 3

4
( Sharpe[rFAST,t+1]− Sharpe[rSLOW,t+1])

2 Sharpe[rt+1(
1
2
)]D2(1

2
; 0)

= 1
2
(Skew[rSLOW,t+1] + Skew[rFAST,t+1])D

3(1
2
; 0)

+ 3 Sharpe[rt+1(
1
2
)]

(
D2(1

2
; 0)

[
1 +

(
Sharpe[rFAST,t+1]− Sharpe[rSLOW,t+1]

2

)2
]
− 1

)
,

(A51)
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where the middle equality follows from substitution of the approximation of Sharpe[rt+1(
1
2
)]

as in (18) of Proposition 3, which holds under the same assumptions as made above. This

completes the proof.

Proof of Proposition 7. First, the expected dynamic return satisfies:

E[rt+1(as(t))] = E[((1− as(t))wSLOW,t + as(t)wFAST,t)rt+1]

= E[rt+1|Bu]P[Bu] + (1− 2aCo)E[rt+1|Co]P[Co]− E[rt+1|Be]P[Be]

+ (2aRe − 1)E[rt+1|Re]P[Re], (A52)

where the first equality follows by definition of rt+1(as(t)) = wt(as(t))rt+1 = ((1−as(t))wSLOW,t+

as(t)wFAST,t)rt+1; and the second equality follows from the law of total expectation and the

facts that wSLOW,t = wFAST,t = 1 after Bull, wSLOW,t = 1 and wFAST,t = −1 after Correction,

wSLOW,t = wFAST,t = −1 after Bear, and wSLOW,t = −1 and wFAST,t = 1 after Rebound.

Second,

Var[rt+1(as(t))] = Var[((1− as(t))wSLOW,t + as(t)wFAST,t)rt+1]

= E[((1− as(t))wSLOW,t + as(t)wFAST,t)
2r2t+1]− (E[rt+1(as(t))])

2

= E[[(1− as(t))2 + 2(1− as(t))as(t)wSLOW,twFAST,t + a2s(t)]r
2
t+1]

− (E[rt+1(as(t))])
2

= E[r2t+1|Bu
Be]P[Bu

Be] + (2aCo − 1)2E[r2t+1|Co]P[Co]

+ (2aRe − 1)2E[r2t+1|Re]P[Re]− (E[rt+1(as(t))])
2, (A53)

where the first equality follows by definition of rt+1(as(t)) = wt(as(t))rt+1 = ((1−as(t))wSLOW,t+

as(t)wFAST,t)rt+1; the second equality follows by definition of variance; the third equality fol-

lows by expanding the square inside the expectation of the first summand; and the last

equality follows by the law of total expectation and the facts that wSLOW,twFAST,t = 1 after

Bull or Bear, and wSLOW,twFAST,t = −1 after Correction or Rebound, plus simplification.

Note that the expected return and variance of the dynamic strategy do not depend on

the values of as(t) in Bull or Bear cycles since both SLOW and FAST agree in these states.

Next, we compute the partial derivatives of the expected return, variance, and standard

deviation with respect to each decision variable. Expected return:

∂

∂aCo

E[rt+1(as(t))] = −2E[rt+1|Co]P[Co], (A54)

∂

∂aRe

E[rt+1(as(t))] = 2E[rt+1|Re]P[Re], (A55)
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Variance:

∂

∂aCo

Var[rt+1(as(t))] = 4(2aCo − 1)E[r2t+1|Co]P[Co]− 2E[rt+1(as(t))]
∂

∂aCo

E[rt+1(as(t))]

= 4(2aCo − 1)E[r2t+1|Co]P[Co]− 2E[rt+1(as(t))](−2E[rt+1|Co]P[Co])

= 4P[Co]{(2aCo − 1)E[r2t+1|Co] + E[rt+1(as(t))]E[rt+1|Co]}, (A56)

∂

∂aRe

Var[rt+1(as(t))] = 4(2aRe − 1)E[r2t+1|Re]P[Re]− 2E[rt+1(as(t))]
∂

∂aRe

E[rt+1(as(t))]

= 4(2aRe − 1)E[r2t+1|Re]P[Re]− 2E[rt+1(as(t))](2E[rt+1|Re]P[Re])

= 4P[Re]{(2aRe − 1)E[r2t+1|Re]− E[rt+1(as(t))]E[rt+1|Re]}, (A57)

where the second equality in the equality chain of (A56) and (A57) follow from (A54) and

(A55), respectively. Standard deviation:

∂

∂aCo

SD[rt+1(as(t))] =
1

2

1

SD[rt+1(as(t))]

∂

∂aCo

Var[rt+1(as(t))]

=
2P[Co]{(2aCo − 1)E[r2t+1|Co] + E[rt+1(as(t))]E[rt+1|Co]}

SD[rt+1(as(t))]
, (A58)

∂

∂aRe

SD[rt+1(as(t))] =
1

2

1

SD[rt+1(as(t))]

∂

∂aRe

Var[rt+1(as(t))]

=
2P[Re]{(2aRe − 1)E[r2t+1|Re]− E[rt+1(as(t))]E[rt+1|Re]}

SD[rt+1(as(t))]
, (A59)

where (A58) and (A59) follow from (A56) and (A57), respectively.

Next, we compute the partial derivatives of the Sharpe ratio with respect to each decision

variable. Sharpe ratio:

∂

∂aCo

Sharpe[rt+1(a)] =
∂

∂aCo

E[rt+1(as(t))]

SD[rt+1(as(t))]

=
SD[rt+1(as(t))]

∂
∂aCo

E[rt+1(as(t))]− E[rt+1(as(t))]
∂

∂aCo
SD[rt+1(as(t))]

Var[rt+1(as(t))]

=
SD[rt+1(as(t))](−2E[rt+1|Co]P[Co])

Var[rt+1(as(t))]

−
E[rt+1(as(t))]

(
2P[Co]{(2aCo−1)E[r2

t+1|Co]+E[rt+1(as(t))]E[rt+1|Co]}
SD[rt+1(as(t))]

)
Var[rt+1(as(t))]
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= −2P[Co]

[
(Var[rt+1(as(t))] + (E[rt+1(as(t))])

2)E[rt+1|Co]

SD[rt+1(as(t))]Var[rt+1(as(t))]

+
(2aCo − 1)E[r2t+1|Co]E[rt+1(as(t))]

SD[rt+1(as(t))]Var[rt+1(as(t))]

]
= −2P[Co]

E[r2t+1(as(t))]E[rt+1|Co] + (2aCo − 1)E[r2t+1|Co]E[rt+1(as(t))]

SD[rt+1(as(t))]Var[rt+1(as(t))]
, (A60)

where the second equality follows by the quotient rule for derivatives; the third equality

follows from (A54) and (A58); and the last equality follows from the definition of variance.

Similar steps for aRe yield the following:

∂

∂aRe

Sharpe[rt+1(a)] = 2P[Re]
E[r2t+1(as(t))]E[rt+1|Re]− (2aRe − 1)E[r2t+1|Re]E[rt+1(as(t))]

SD[rt+1(as(t))]Var[rt+1(as(t))]
.

(A61)

Next, we apply the first order conditions to derive stationary points of the maximization

problem. The first order conditions are: ∂
∂aCo

Sharpe[rt+1(a)] = 0 and ∂
∂aRe

Sharpe[rt+1(a)] =

0, or equivalently, by (A60) and (A61),

E[r2t+1(as(t))]E[rt+1|Co] + (2aCo − 1)E[r2t+1|Co]E[rt+1(as(t))] = 0, (A62)

E[r2t+1(as(t))]E[rt+1|Re]− (2aRe − 1)E[r2t+1|Re]E[rt+1(as(t))] = 0. (A63)

Dividing each condition (A62) and (A63) through by E[r2t+1|Co] and E[r2t+1|Re], respectively,

and rearranging yields the equivalent conditions:

(2aCo − 1)E[rt+1(as(t))] = −E[rt+1|Co]

E[r2t+1|Co]
E[r2t+1(as(t))], (A64)

(2aRe − 1)E[rt+1(as(t))] =
E[rt+1|Re]

E[r2t+1|Re]
E[r2t+1(as(t))]. (A65)

By (A52) and (A53), and the fact that E[r2t+1(as(t))] = Var[r2t+1(as(t))] + (E[rt+1(as(t))])
2,

these conditions are equivalent to (2aCo − 1)(E[rt+1|Bu]P[Bu] − E[rt+1|Be]P[Be] + (2aRe −
1)E[rt+1|Re]P[Re]) = −E[rt+1|Co]

E[r2
t+1|Co]

(E[r2t+1|Bu
Be]P[Bu

Be] + (2aRe − 1)2E[r2t+1|Re]P[Re]) and (2aRe −
1)(E[rt+1|Bu]P[Bu] + (1− 2aCo)E[rt+1|Co]P[Co]−E[rt+1|Be]P[Be]) = E[rt+1|Re]

E[r2
t+1|Re]

(E[r2t+1|Bu
Be]P[Bu

Be] +

(2aCo − 1)2E[r2t+1|Co]P[Co]), so we can isolate the decision variables on either side of the

condition equations: (2aCo − 1) = −E[rt+1|Co]

E[r2
t+1|Co]

E[r2
t+1|Bu

Be
]P[Bu

Be
]+(2aRe−1)

2E[r2
t+1|Re]P[Re]

E[rt+1|Bu]P[Bu]−E[rt+1|Be]P[Be]+(2aRe−1)E[rt+1|Re]P[Re]

and (2aRe−1) = E[rt+1|Re]

E[r2
t+1|Re]

E[r2
t+1|Bu

Be
]P[Bu

Be
]+(2aCo−1)

2E[r2
t+1|Co]P[Co])

E[rt+1|Bu]P[Bu]+(1−2aCo)E[rt+1|Co]P[Co]−E[rt+1|Be]P[Be]
. Next, rewrite these
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conditions as

x(y) = −E[rt+1|Co]

E[r2t+1|Co]

E[r2t+1|Bu
Be]P[Bu

Be] + y2E[r2t+1|Re]P[Re]

E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be] + yE[rt+1|Re]P[Re]
, (A66)

y(x) =
E[rt+1|Re]

E[r2t+1|Re]

E[r2t+1|Bu
Be]P[Bu

Be] + x2E[r2t+1|Co]P[Co])

E[rt+1|Bu]P[Bu]− xE[rt+1|Co]P[Co]− E[rt+1|Be]P[Be]
. (A67)

To find a fixed point (x∗, y∗) of the above system such that x∗ = x(y∗) and y∗ = y(x∗),

note that x(0) = x(y(0)) and y(0) = y(x(0)). Hence, x∗ = x(y(0)) and y∗ = y(x(0)) are

fixed points. Specifically, we have x(0) = −E[rt+1|Co]

E[r2
t+1|Co]

E[r2
t+1|Bu

Be
]P[Bu

Be
]

E[rt+1|Bu]P[Bu]−E[rt+1|Be]P[Be]
and y(0) =

E[rt+1|Re]

E[r2
t+1|Re]

E[r2
t+1|Bu

Be
]P[Bu

Be
]

E[rt+1|Bu]P[Bu]−E[rt+1|Be]P[Be]
. Therefore,

a∗Co =
1

2

(
1− E[rt+1|Co]

E[r2t+1|Co]

E[r2t+1|Bu
Be]P[Bu

Be]

E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be]

)
, (A68)

a∗Re =
1

2

(
1 +

E[rt+1|Re]

E[r2t+1|Re]

E[r2t+1|Bu
Be]P[Bu

Be]

E[rt+1|Bu]P[Bu]− E[rt+1|Be]P[Be]

)
, (A69)

comprise a stationary point of the Sharpe ratio maximization problem.

Moreover, the necessary stationary conditions (A64) and (A65) imply that (2aCo − 1)

and (2aRe− 1) must be proportional to −E[rt+1|Co]

E[r2
t+1|Co]

and E[rt+1|Re]

E[r2
t+1|Re]

, respectively, with the same

proportionality constant,
E[r2

t+1(as(t))]

E[rt+1(as(t))]
. Since the Sharpe ratio is bounded above and below,

and since this proportionality constant can be either positive or negative—depending on the

sign of its denominator—the stationary point defined by (A68) and (A69), and the negative

version of this point, are the only two stationary points. If E[rt+1|Bu]P[Bu]−E[rt+1|Be]P[Be] >

0, then expected return at stationary point (A68) and (A69) is positive, and this point is

the unique maximizer, while the negative version of this point is the unique minimizer. This

completes the proof.
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Main Appendix B. Data Sources

The U.S. stock market returns of Sections 2, 3, and 4 are the excess-weighted factor returns

(Mkt-RF) from the Kenneth French Data Library. The data coverage is from 1926-07 to

2018-12. Section 5 makes use of local excess equity market returns for 20 countries. The

data source is Datastream with coverage from 1980-01 to 2018-12. Some countries have later

start dates in the sample: AUT, CHE, DNK, HKG, IRL, NLD, and SGP begin 1980-02;

ESP begins 1987-04; FIN begins 1988-04; JPN begins 1986-08; NOR begins 1986-02; and

SWE begins 1982-02.

Section 2 studies 15 macro time-series. From the FRED database of the Federal Reserve

Bank of St. Louis, we obtained five indexes compiled by the Chicago Federal Reserve: CFNAI

Personal Consumption and Housing (1967-03 to 2019-03); CFNAI Production and Income

(1967-03 to 2019-03); CFNAI Sales, Orders and Inventories (1967-03 to 2019-03); CFNAI

Employment, Unemployment and Hours (1967-03 to 2019-03); and the Chicago Fed National

Financial Conditions Index (1967-03 to 2019-03). Also, from the FRED database we obtained

the TED spread (1986-01 to 2019-03) and the Consumer Sentiment Index of the University

of Michigan (1978-01 to 2019-03). The series of monetary policy shocks are estimated as in

Gertler and Karadi (2015) and the data coverage is from 1990-01 to 2012-06. The liquidity

innovation measure is from Pastor and Stambaugh (2003) (from 1962-08 to 2018-12), the

bond illiquidity metric (Noise) is from Hu, Pan, and Wang (2013) (from 1987-01 to 2016-11),

and the high-volatility/low volatility spread is from Pflueger, Siriwardane, and Sunderam

(2018) (quarterly data from 1970-06 to 2016-06). The U.S. Policy measure is from Baker,

Bloom, and Davis (2016) and covers the period from 1985-01 to 2019-03. Lastly, the PMI

ISM series is from Bloomberg (1948-01 to 2019-03) and from the Survey of Professional

forecasts we obtained recession expectations (QTR1, median response) and corporate profit

expectations (DCPROF2, % change of median response); both are from 1968-12 to 2019-03

at a quarterly frequency.
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Main Appendix C. Comparison with TS Momentum

of Moskowitz et al. (2012)

Established time series (TS) momentum strategies such as those of Moskowitz et al.

(2012) have been shown to generate significant alpha with respect to market returns. What

do our intermediate-speed TS momentum strategies offer in addition? In this section, we

compare the performance of the MED strategy from Section 3 (Table 2) with the performance

of the TS momentum strategy established by Moskowitz et al. (2012) applied to U.S. market

returns, which we label “MOP”.

MOP explicitly embeds volatility targeting. Specifically, excess returns on MOP are

defined by rMOP
t+1 = sign(rt−12,t)

15%
σt
rt+1, where rt−12,t is the trailing 12-month excess geometric

return on U.S. value-weighted factor, the scalar 15% is the volatility target, rt+1 is the one-

month U.S. excess value-weighted factor return, and σt is ex-ante annualized volatility defined

as follows. The ex-ante annualized variance is σ2
t = 261

∑∞
i=0(1 − δ)δi(rt−1−i − rt)2, where

the scalar 261 scales the variance to be annual, the weights (1− δ)δi add up to one, and rt is

the exponentially weighted average return computed similarly. The parameter δ is chosen so

that the center of mass of the weights is
∑∞

i=0(1− δ)δii = δ
1−δ = 60 days. The 15% annual

volatility target is chosen because it is similar to the volatility of the market return.

Volatility targeting introduces a separate mechanism from TS momentum (Kim et al.

(2016), Moreira and Muir (2017), Harvey et al. (2018)). Note that MED is not scaled by

trailing volatility as in MOP. Rather, MED blends the signs of the trailing 12-month and

1-month arithmetic average returns, which embeds volatility timing effects intrinsically (as

discussed in Section 3.2).

Table C.1 reports that MED generates significant alpha with respect MOP over the 50-

year evaluation period from 1969 through 2018 used in our main analyses.31 This evidence

suggests that our intermediate-speed TS momentum strategies can offer a distinct source of

alpha relative to strategies that explicitly embed volatility targeting. See Section 3.2.2 for

additional discussion on relationships with volatility management.

31We obtain similar results (unreported) over the longer sample using data back to 1926.
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Table C.1: Performance Summary: MOP vs. MED

a = 1
2

MOP MED

Return and Risk
Average (%) (anlzd.) 6.04 5.88
Volatility (%) (anlzd.) 16.83 11.60
Sharpe Ratio (anlzd.) 0.36 0.51

Alpha to MOP
Alpha (%) (anlzd.) 0.00 3.14
Alpha t-statistic — 2.53

Notes: This table reports the sample average, volatility, Sharpe ratio, as well as alpha and alpha t-statistic
with respect to the TS momentum strategy of Moskowitz et al. (2012) (MOP). Excess returns on MOP are
defined as rMOP

t+1 = sign(rt−12,t)
15%
σt
rt+1, where rt−12,t is the trailing 12-month excess geometric return on

U.S. value-weighted factor, the scalar 15% is the volatility target, rt+1 is the one-month U.S. excess value-
weighted factor return, and σt is ex-ante annualized volatility defined as follows. The ex-ante annualized
variance is σ2

t = 261
∑∞
i=0(1− δ)δi(rt−1−i − rt)2, where the scalar 261 scales the variance to be annual, the

weights (1 − δ)δi add up to one, and rt is the exponentially weighted average return computed similarly.
The parameter δ is chosen so that the center of mass of the weights is

∑∞
i=0(1− δ)δii = δ

1−δ = 60 days. The
15% annual volatility target is chosen because it is similar to the volatility of the market return itself.

MED strategy weights are formed by mixing slow and fast strategies with mixing parameter a = 1
2 :

wt(a) = (1− a)wSLOW,t + awFAST,t. The slow strategy weight applied to the market return in month t+ 1,
wSLOW,t, equals +1 if the trailing 12-month return (arithmetic average monthly return) is nonnegative,
and otherwise equals −1. The fast strategy weight, wFAST,t, equals +1 if the trailing 1-month return is
nonnegative, and otherwise equals −1. MED excess returns are formed as rt+1(a) = wt(a)rt+1, where rt+1

is the U.S. excess value-weighted factor return.

Data sources: Kenneth French Data Library. The evaluation period is 1969-01 to 2018-12.
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Internet Appendix D. MOM6 vs. Various Speeds

Table D.1: Momentum Performance by Speed

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
SLOW MED FAST

MOM6 MOM12 MOM1

Return and Risk
Average (%) (anlzd.) 4.75 6.46 6.17 5.88 5.59 5.30
Volatility (%) (anlzd.) 15.67 15.62 12.72 11.60 12.74 15.66
Sharpe Ratio (anlzd.) 0.30 0.41 0.48 0.51 0.44 0.34

Market Timing
Average Position 0.33 0.46 0.39 0.32 0.25 0.18
Market Beta −0.01 0.15 0.05 −0.04 −0.13 −0.23
Alpha (%) (anlzd.) 4.79 5.58 5.85 6.12 6.39 6.66
Alpha t-statistic 2.15 2.54 3.24 3.71 3.57 3.07

Tail Behavior
Skewness −0.61 −0.43 −0.13 0.02 0.03 0.15
Max. Drawdown (%) −64.56 −43.43 −37.96 −34.43 −34.07 −44.53
Average (anlzd.)/|Max. DD| 0.07 0.14 0.16 0.17 0.17 0.12

Notes: This table reports the sample average, volatility, Sharpe ratio, skewness, maximum drawdown,
ratio of average return to absolute maximum drawdown, average position, the market beta and alpha, and
the alpha t-statistic for monthly returns of the MOM6 strategy and of TS momentum strategies of various
speeds. The slow strategy weight applied to the market return in month t + 1, wSLOW,t, equals +1 if
the trailing 12-month return (arithmetic average monthly return) is nonnegative, and otherwise equals −1.
The FAST strategy weight, wFAST,t, equals +1 if the trailing 1-month return is nonnegative, and otherwise
equals −1. Intermediate-speed strategy weights, wt(a) are formed by mixing slow and fast strategies with
mixing parameter a: wt(a) = (1 − a)wSLOW,t + awFAST,t, for a ∈ [0, 1]. Strategy returns are formed as
rt+1(a) = wt(a)rt+1, where rt+1 is the U.S. excess value-weighted factor return (Mkt-RF) from the Kenneth
French Data Library. A MOMk strategy is long one unit (+1) if the trailing k-month return is nonnegative,
and otherwise it is short one unit (−1). The evaluation period is 1969-01 to 2018-12.
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Internet Appendix E. Static Speed Performance—Since

1927

Table E.1: Performance Summary by Speed

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Market SLOW MED FAST

Return and Risk
Average (%) (anlzd.) 7.72 7.60 7.00 6.40 5.81 5.21
Volatility (%) (anlzd.) 18.56 18.56 15.33 14.11 15.38 18.63
Sharpe Ratio (anlzd.) 0.42 0.41 0.46 0.45 0.38 0.28

Market Timing
Average Position 1.00 0.45 0.39 0.33 0.27 0.21
Market Beta 1.00 0.07 0.05 0.03 0.00 −0.02
Alpha (%) (anlzd.) 0.00 7.03 6.62 6.21 5.80 5.38
Alpha t-statistic — 3.61 4.11 4.18 3.58 2.74

Tail Behavior
Skewness 0.19 −0.28 −0.02 0.14 0.12 0.15
Max. Drawdown (%) −84.69 −68.73 −57.08 −64.00 −74.29 −82.76
Average (anlzd.)/|Max. DD| 0.09 0.11 0.12 0.10 0.08 0.06

Notes: This table reports the sample average, volatility, Sharpe ratio, average position, market beta and
alpha, alpha t-statistic, skewness, maximum drawdown, and ratio of average return to absolute maximum
drawdown for monthly returns of the long-only market strategy (Market) and of TS momentum strategies of
various speeds. The slow strategy weight applied to the market return in month t+ 1, wSLOW,t, equals +1 if
the trailing 12-month return (arithmetic average monthly return) is nonnegative, and otherwise equals −1.
The fast strategy weight, wFAST,t, equals +1 if the trailing 1-month return is nonnegative, and otherwise
equals −1. Intermediate-speed strategy weights, wt(a) are formed by mixing slow and fast strategies with
mixing parameter a: wt(a) = (1 − a)wSLOW,t + awFAST,t, for a ∈ [0, 1]. Strategy returns are formed as
rt+1(a) = wt(a)rt+1, where rt+1 is the U.S. excess value-weighted factor return (Mkt-RF) from the Kenneth
French Data Library. The evaluation period is 1927-07 to 2018-12.
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Internet Appendix F. Static Speed Performance—Equity

Factors

Table F.1: Performance Summary: Equity Factors

a = 0 a = 1
4
a = 1

2
a = 3

4
a = 1 Average of

Panel A: Market Mkt-Rf SLOW MED FAST SLOW, FAST

Sharpe Ratio (anlzd.) 0.42 0.41 0.46 0.45 0.39 0.28 0.35
Alpha to Mkt-Rf t-stat. — 3.61 4.11 4.18 3.58 2.74 —

Panel B: Size SMB

Sharpe Ratio (anlzd.) 0.22 0.30 0.35 0.37 0.35 0.31 0.30
Alpha to SMB t-stat. — 2.29 2.79 3.08 3.02 2.73 —

Panel C: Value HML

Sharpe Ratio (anlzd.) 0.36 0.34 0.40 0.44 0.43 0.38 0.36
Alpha to HML t-stat. — 2.78 3.35 3.69 3.57 3.15 —

Panel D: Profitability RMW

Sharpe Ratio (anlzd.) 0.41 0.38 0.50 0.59 0.59 0.52 0.45
Alpha to RMW t-stat. — 2.85 3.71 4.33 4.30 3.84 —

Panel E: Investment CMA

Sharpe Ratio (anlzd.) 0.49 0.36 0.47 0.57 0.59 0.55 0.46
Alpha to CMA t-stat. — 1.51 2.34 3.09 3.40 3.34 —

Notes: This table reports the sample Sharpe ratio and alpha t-statistic for monthly returns of the long-only

strategy and of TS momentum strategies of various speeds for each of five equity factors (Mkt-Rf, SMB,

HML, RMW, CMA) from Kenneth French Data Library. The evaluation period for Mkt-Rf, SMB, and HML

is 1927-07 to 2018-12, and for RMW and CMA is 1964-07 to 2018-12 (first year of data before 1927-07 and

1964-07, respectively, is for computing the SLOW signal). The slow strategy weight in month t+1, wSLOW,t,

equals +1 if the trailing 12-month return (arithmetic average monthly return) is nonnegative, and otherwise

equals −1. The fast strategy weight, wFAST,t, equals +1 if the trailing 1-month return is nonnegative,

and otherwise equals −1. Intermediate-speed strategy weights, wt(a) are formed by mixing slow and fast

strategies with mixing parameter a: wt(a) = (1− a)wSLOW,t + awFAST,t, for a ∈ [0, 1]. Strategy returns are

formed as rt+1(a) = wt(a)rt+1, where rt+1 is the factor return. The table also reports the average of the

Sharpe ratios of SLOW and FAST.
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Internet Appendix G. Timing vs. Static Component Per-

formance

Table G.1: Market Timing and Static Exposure, U.S. Stock Market

Panel A: Performance of the Market-Timing Component

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
(wt(a)− E[wt(a)])rt+1 SLOW MED FAST

Average (%) (anlzd.) 3.76 3.88 4.01 4.13 4.26
Volatility (%) (anlzd.) 16.18 13.71 12.85 13.91 16.51
Sharpe Ratio (anlzd.) 0.23 0.28 0.31 0.30 0.26
Skewness −0.02 0.17 0.23 0.22 0.29
Max. Drawdown (%) −63.33 −49.85 −46.58 −43.76 −50.23
Avg. (%) (anlzd.)/|Max. DD| 0.06 0.08 0.09 0.09 0.08
Avg. Position 0.00 0.00 0.00 0.00 0.00
Market Beta −0.31 −0.33 −0.36 −0.38 −0.41
Alpha (%) (anlzd.) 5.58 5.85 6.12 6.39 6.66
Alpha t-stat 2.54 3.24 3.71 3.57 3.07

Panel B: Performance of Static Component

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
E[wt(a)]rt+1 SLOW MED FAST

Average (%) (anlzd.) 2.70 2.28 1.87 1.46 1.04
Volatility (%) (anlzd.) 7.14 6.05 4.95 3.86 2.76
Sharpe Ratio (anlzd.) 0.38 0.38 0.38 0.38 0.38
Skewness −0.55 −0.55 −0.55 −0.55 −0.55
Max. Drawdown (%) −28.54 −24.69 −20.66 −16.45 −12.04
Avg. (%) (anlzd.)/|Max. DD| 0.09 0.09 0.09 0.09 0.09
Avg. Position 0.46 0.39 0.32 0.25 0.18
Market Beta 0.46 0.39 0.32 0.25 0.18
Alpha (%) (anlzd.) 0.00 0.00 0.00 0.00 0.00

Notes: This table reports the sample average, volatility, Sharpe ratio, skewness, maximum drawdown,
ratio of average return to absolute maximum drawdown, average position, market beta and alpha, and
alpha t-statistic for monthly returns of the static (Panel B) and market-timing (Panel A) components of the
long-only market strategy (Market) and of TS momentum strategies of various speeds. The slow strategy
weight applied to the market return in month t + 1, wSLOW,t, equals +1 if the trailing 12-month return
(arithmetic average monthly return) is nonnegative, and otherwise equals −1. The fast strategy weight,
wFAST,t, equals +1 if the trailing 1-month return is nonnegative, and otherwise equals −1. Intermediate-
speed strategy weights, wt(a) are formed by mixing slow and fast strategies with mixing parameter a:
wt(a) = (1−a)wSLOW,t+awFAST,t, for a ∈ [0, 1]. Strategy returns are formed as rt+1(a) = wt(a)rt+1, where
rt+1 is the U.S. excess value-weighted factor return (Mkt-RF) from the Kenneth French Data Library. The
static component return is E[wt(a)]rt+1. The market-timing component return is (wt(a) − E[wt(a)])rt+1.
The evaluation period is 1969-01 to 2018-12.
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Internet Appendix H. Beta and Alpha—Last 15 Years

Table H.1: Beta and Alpha Decompositions by Speed

a = 0 a = 1
4

a = 1
2

a = 3
4

a = 1
Market Beta and Alpha SLOW MED FAST

Beta 0.20 0.14 0.08 0.01 −0.05
Alpha (%) (anlzd.) 6.08 5.40 4.72 4.04 3.37
Alpha t-stat. 1.70 1.83 1.73 1.34 0.91

Beta Components

Static 0.722 0.619 0.517 0.414 0.311
Market Timing 0.007 0.006 0.005 0.003 0.002
Volatility Timing −0.528 −0.487 −0.445 −0.403 −0.362

Alpha Components (%) (anlzd.)

Market Timing 2.09 1.72 1.36 0.99 0.63
Volatility Timing 4.00 3.69 3.37 3.06 2.74

Notes: This table reports the sample market beta, alpha, and alpha t-statistic of monthly returns for
momentum strategies of various speeds repeated from Table 2. The table also reports the (additive) decom-
position of beta into static, market-timing, and volatility-timing components according to estimates of the
terms in

Beta[rt+1(a)] = E[wt(a)]︸ ︷︷ ︸
static

component

+
Cov[wt(a), rt+1]

Var[rt+1]
E[rt+1]︸ ︷︷ ︸

market timing
component

+
Cov[wt(a), (rt+1 −E[rt+1])2]

Var[rt+1]︸ ︷︷ ︸
volatility timing

component

; (24)

and the (additive) decomposition of alpha into market timing and volatility timing according to estimates
of the terms in

Alpha[rt+1(a)] = Cov[wt(a), rt+1]

(
1− (E[rt+1])2

Var[rt+1]

)
− Cov[wt(a), (rt+1 −E[rt+1])2]

Var[rt+1]
E[rt+1]. (25)

The slow strategy weight applied to the market return in month t + 1, wSLOW,t, equals +1 if the trailing
12-month return (arithmetic average monthly return) is nonnegative, and otherwise equals −1. The fast
strategy weight, wFAST,t, equals +1 if the trailing 1-month return is nonnegative, and otherwise equals
−1. Intermediate-speed strategy weights, wt(a) are formed by mixing slow and fast strategies with mixing
parameter a: wt(a) = (1 − a)wSLOW,t + awFAST,t, for a ∈ [0, 1]. Strategy returns are formed as rt+1(a) =
wt(a)rt+1, where rt+1 is the U.S. excess value-weighted market factor return (Mkt-RF) from the Kenneth
French Data Library. The evaluation period is 2004-01 to 2018-12.
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Internet Appendix I. DYN vs. Static Strategies on

U.S. Equities

Figure I.1: Sharpe Ratios (Month t to End of Sample): DYN vs. Static Strategies

Beginning Month t to 2018-12

Notes: This figure plots, for each month t in 1969-01 to 2004-01, the Sharpe ratio of various strategies over
the evaluation period beginning month t and ending December 2018. Strategies OPT and DYN are the same
as those described in Table 6. Static-speed strategies are the same as those described in Table 2.
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Internet Appendix J. DYN Sensitivity to Estimation

Error

Figure J.1 graphs Sharpe ratio contour levels for momentum strategies with state-dependent

speed pairs (aCo, aRe) on the unit square over the most recent 15-year evaluation period 2004-

01 to 2018-12. Each speed pair is set at the beginning of the evaluation period. The con-

centric curves represent speed pairs with equal Sharpe ratio levels. Lighter-shaded regions

reflect higher Sharpe ratios and darker-shaded regions reflect lower Sharpe ratios. Static

strategies—strategies whose speeds do not vary by state—are represented by the points on

the dotted diagonal line. OPT is the state-dependent speed pair that would have achieved

the highest Sharpe ratio ex post, and DYN indicates the state-dependent pair based on es-

timates of state-conditional first and second moments using monthly data from 1926-07 to

2003-12 prior to the evaluation period.

The figure illustrates that the Sharpe ratio is less sensitive to deviations in speed pair

values near the in-sample mean-variance optimal speed pair, OPT, than it is farther away.

The DYN speed pair based on the historical sample is close to OPT and is approximately

as good a performer. The small dots represent the state-dependent speed pairs from 1,000

block bootstrap estimates of state-conditional first and second moments using monthly data

from 1926-07 to 2003-12.32 The bootstrap DYN speed pairs tend to fall into the upper-left

quadrant of the graph in Figure J.1, which corresponds to strategies that tilt to SLOW after

Corrections and to FAST after Rebounds.

To summarize, state-dependent speed pairs that yield the highest performance tend to be

those that are relatively slow after Corrections and relatively fast after Rebounds. Moreover,

speed pairs in this region are closer to optimal and, in this region, Sharpe ratio performance

is less sensitive to estimation error.

32The block bootstrap is performed as follows. We partition the 930 historical monthly returns on the U.S.
stock market from 1926-07 to 2003-12 into 10 equal-sized nonoverlapping blocks of 93 consecutive months.
We randomly sample 10 of these blocks with replacement to form one bootstrap historical sample. For each
bootstrap sample, we determine cycle states and estimate state-conditional first and second moments. We
plug these estimates into (30) and (31) to generate a speed pair for the sample.
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Figure J.1: Sharpe Ratio Performance of Different State-Conditional Speed Pairs
Over the Most Recent 15 Years
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Notes: This figure reports Sharpe ratio levels of dynamic-speed momentum strategies over the evaluation
period 2004-01 to 2018-12 for speed pairs (aCo, aRe) where strategy weights take the form: (1−as(t))wSLOW,t+
as(t)wFAST,t, where wSLOW,t, equals +1 if the trailing 12-month return (arithmetic average monthly return)
is nonnegative and otherwise equals −1; wFAST,t, equals +1 if the trailing 1-month return is nonnegative and
otherwise equals −1; and the four observable market states at date t are defined as: Bu: wSLOW,t = wFAST,t =
+1; Be: wSLOW,t = wFAST,t = −1; Co: wSLOW,t = +1, wFAST,t = −1; and Re: wSLOW,t = −1, wFAST,t = +1.
Speeds aBu = aBe = 0.5 for all strategies in the figure. The dotted diagonal highlights the continuum
of static strategies, which apply the same speeds after all states—SLOW (as(t) = 0), MED (as(t) = 0.5),
and FAST (as(t) = 1) are labeled. OPT represents the dynamic strategy pair that would have achieved
the best Sharpe ratio ex post. DYN is the dynamic (state-dependent) speeds strategy whose weights are
based on point estimates of the mean-variance optimal state-dependent speeds, as(t), using âBu = âBe = 1

2
and sample versions of (30) and (31) for âCo and âRe, respectively, based on data before the evaluation
window beginning 1926-07. If either âCo or âRe fall outside the unit interval [0, 1], then we set its value to
the nearest endpoint, 0 or 1. Strategy returns are formed as rt+1(a) = wt(a)rt+1, where rt+1 is the U.S.
excess value-weighted market factor return (Mkt-RF) from the Kenneth French Data Library. The small
dots represent block bootstrap point estimates for DYN using monthly data from 1926-07 to 2003-12. Note
that the intermediate-speed static strategy with a = 1

4 achieves approximately the highest Sharpe ratio of
all static strategies over the measurement period.
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